
system do not constitute a complete set of operators needed
for universal quantum computing. Nor should they: as shown
in Ref. [13], the complete set of exact quantum operators can
only be realized in a system with non-Abelian topological
order Ð in a system, in other words, where excitations are
non-Abelian anyons. Our lattice, however, produces the
simplest Abelian anyons, as already explained above. Thus,
the proposed model can be considered as a model of an ideal
quantummemory, but as yet not amodel of an ideal quantum
computer. A theory of Josephson lattice-based topologically-
ordered lattice systems with a non-Abelian gauge group has
been given recently in Ref. [29].

6. Conclusions
In the present talk, which is the development of the ideas of
Ref. [14], we offer a new type of a Josephson lattice, capable of
acting as an `ideal' quantum memory. Compared to the
original version outlined in Ref. [14], there are a number of
important advantages to the new system, namely: (i) it
operates in the parameter range EJ 4EC, thereby reducing
the level of poorly controlled electric noise due to offset
charges in the insulating substrate; (ii) it employs only one
type of Josephson junctions and is therefore much simpler to
fabricate; (iii) in the ideal case it is exactly 2K-fold degenerate,
whereas in the version in Ref. [14] degeneracy was achieved
asymptotically with the size of the system, with accuracy
exp �ÿcL�, where c � 1; for the new system a similar constant
is calculated, including small perturbations, to be of the order
of ln �r=E�4 1, i.e., an array of smaller size will suffice to
achieve the desired accuracy.

We have greatly benefited from numerous discussions
with G Blatter, D A Ivanov, A S Ioselevich, S E Korshunov,
A I Larkin, AMillis, B Pannetier, and E Serret when working
on the idea outlined here.
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Electrodynamics of materials
with negative index of refraction

V G Veselago

Over the past few years there has been an avalanche of
progress in a new branch of electrodynamics Ð electrody-
namics of materials with negative refraction. Experiments in
this area were pioneered by a group of physicists at the
University of California at San Diego, USA [1, 2]. They
demonstrated the unusual electrodynamic properties of some
composite materials, which can be explained purely formally
by ascribing a negative index of refraction n to these
materials. These composites are the assemblies of small
metallic elements arranged into strictly regular crystal-like
geometric structures. The structures can be considered
continuous for wavelengths considerably longer than the
size of and the separation between its constituent elements.
The UCSD experiments were performed in the centimeter
wavelength range on composites with element size and
separation typically of the order of 7 to 10 mm.

The key experimental finding of the San Diego study was
a rather unusual manifestation of Snell's law of refraction for
such materials. In Fig. 1 is shown the passage of a light ray
through the interface between two media with indices of
refraction n1 and n2. If we take n1 � 1 (without loss of
generality) then, customarily, a refracted ray takes the path
1 ± 4. In the SanDiego experiments the ray took the path 1 ± 3.

j j

1 2

n1 � 1

n2 c c

3 4

Figure 1.Refraction of light at the interface between twomedia. The paths

1 ± 4 and 1 ± 3 are taken by the incident and refracted rays in the cases

n2 > 0 and n2 < 0, respectively.
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This path satisfies Snell's law if we assume that n2 < 0. Snell's
law itself,

sinj
sinc

� n2
n1
� n21 ; �1�

remains unchanged by this step.
Along with Snell's law, some other aspects of electro-

dynamics and optics, in particular the Doppler effect, the
Cherenkov effect, Fresnel formulas, and Fermat's principle,
manifest themselves in an unusual way in materials with
n < 0. A fairly comprehensive introduction to electrody-
namics of materials with n < 0 is given, in particular, in
Refs [3 ± 6]. The important point these papers make is that in
materials with a negative index of refraction the dielectric
permittivity e and the magnetic permeability m are also
negative. Importantly, all the results obtained in these papers
are valid for isotropic materials, for which the quantities n, e,
and m are scalars.

The negative value of n also corresponds to the fact that
the wave vector k and the Poynting vector S in such materials
are antiparallel or, equivalently, that the phase velocity is
antiparallel to the group velocity.

This is verified by simply writing down the Maxwell
equations and the Poynting vector expression for the case of
uniform plane waves in an isotropic medium,

�k� E� � o
c
mH ;

�k�H� � ÿo
c
eE ; �2�

S � �E�H� :
It is easily seen that simultaneously changing the sign of e and
m translates the right handed vector triplet k,E, andH into the
left handed one. It is for this reason that such composites are
called left-handed materials (LHMs) in the English language
literature.

Thus it can be argued that isotropic media with both e and
m negative exhibit negative refraction (or have a negative
value of n, which is the same) and that the phase and group
velocities in them are aligned antiparallel. Also the reverse is
true: if an isotropic material has a negative value of the index
of refraction n, then it has both e and m negative, and the phase
and group velocities are in opposite directions.

It should be noted that, by itself, the notion of oppositely
directed phase and group velocities is not anything new. It

was discussed, in particular, in the long-standing work of
L I Mandelstam [7]. In addition, there are electronic devices
that have long been known (for example, the backward wave
tube, BWT), in which the phase velocity is opposite to the
direction of the energy flow. In recent years there has been a
good deal of discussion about the properties of so-called
photonic crystals [8], another system where the vectors k and
S can be made to be oppositely directed. However, photonic
crystals are generally essentially anisotropic and cannot be
characterized by a scalar index n. The same is true for
BWT-type devices.

The advent of materials with a negative value of n raises a
very important question about all those laws and formulas in
electrodynamics, optics, and in related engineering sciences
that involve the index of refraction n: to what measure is their
validity preserved upon the transition to n < 0? When
straightforwardly replacing n! ÿn, can we always expect
to arrive at a correct result as we do in the case of Snell's law?
The answer is generally negative because most laws and
formulas of electrodynamics and optics correspond to the
case of an apriori nonmagnetic material with magnetic
permeability m � 1. The result of such `nonmagnetic approx-
imation' is that many formulas originally containing m
cardinally change upon the substitution m � 1 and it is only
in this nonmagnetic approximation that they retain their
validity. The following table illustrates the situation.

From this table it can be seen that there are three groups of
physical laws and effects whose formulation changes differ-
ently upon transition from nonmagnetic approximation
formulas to exact expressions. The first group includes
Snell's law and the Doppler and Cherenkov effects, in whose
formulas the usual nonmagnetic approximation expression
n � ��

e
p

should simply be replaced by n � �����
em
p

, and if e and m
are both negative, then n should also be taken with the minus
sign.

The second group includes light refraction and reflection
laws Ð in particular, the Fresnel formulas. In these, the
transition from the nonmagnetic approximation to exact
theory is achieved by replacing n � ��

e
p

not by n � �����
em
p

, but
by

�������
e=m

p � 1=z, where z � �������
m=e

p
is thewave impedance of the

medium. The wave impedance has the dimension Ohm and,
together with the speed of light, is a unique characteristic of
the medium. It can be seen from the table that, among other
things, the condition for there being no light reflection at the
flat interface between two media changes significantly on
departure from the nonmagnetic approximation. What this
condition now requires is that the wave impedances of the two

Table

Physics Nonmagnetic approximation Exact formula

Snell's law, Doppler effect, Cherenkov effect
n � ��

e
p ! n � �����

em
p

, if e and m < 0, then n < 0
sinj
sinc

� n21 �
�����
e2
e1

r
sinj
sinc

� n21 �
����������
e2m2
e1m1

r
Fresnel formulas

n � ��
e
p ! 1

z
�

����
e
m

r r? � n1 cosjÿ n2 cosc
n1 cosj� n2 cosc

r? � z2 cosjÿ z1 cosc
z2 cosj� z1 cosc

Reêection coefécient for normal incidence
on an interface

r � n1 ÿ n2
n1 � n2

r � z2 ÿ z1
z2 � z1

No-reêection condition n1 � n2 z1 � z2

Brewster law tanj � n tanj �
������������������������������
e2
e1

e2m1 ÿ e1m2
e2m2 ÿ e1m1

r
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media, not their indices of refraction, be equal. It is important
to emphasize that, unlike n, the wave impedance z remains
positive for negative values of e and m.

And, finally, the third group of relations that depend on n
and change significantly upon transition from nonmagnetic
to exact formulas includes, in particular, the Brewster angle
formula tanj � n. The exact expression for the Brewster
angle is given in the last row of the table. The important point
to note is that the expression under the square root in this
exact formula remains unaltered by changing the signs of e
and m simultaneously in one of the media. It must be
remembered that the Brewster angle formula given in the
table corresponds to one particular polarization of the light.
The formula for the polarization perpendicular to this one is
obtained from the formula in the table by the replacements
e! m and m! e in the expression under the square root.
Thus, reflection at the Brewster angle always takes place, for
any permittivity and permeability values Ð but only for one
of the two possible polarizations the incident light can have.

The introduction of the concept of negative refraction of
index also has made it possible to improve the formulation of
such a fundamental law as Fermat's principle. A detailed
discussion of this question has been given recently in Ref. [9],
where it is shown that for an electromagnetic wave traveling
through materials with n of either sign, the correct formula-
tion of Fermat's principle is the requirement that the total
length of the optical path,

dL � d
�
n dl � 0 ; �3�

be an extremum. In this expression (which is in fact the
eikonal) one integrates along the actual path along which
the light ray travels. Such an approach assumes that the
length of the optical path traveled by an electromagnetic wave
in a medium with negative n is also negative. This implies, in
particular, that in some cases the total length of the optical
path can be negative or even zero, although clearly neither the
geometrical length of the light propagation path nor the light
propagation time itself are by any means zero.

This is exactly the situation which occurs when light
travels through a plane-parallel plate made of material with
e � m � n � ÿ1. Such a plate, as can be seen from Fig. 2, can
focus radiation from a point source located on the other side
of the plate to a point. From Fig. 2 it is seen that the path Am
traveled by the light from the source to the plate and the path
nB from the plate to the image add up to give the pathmn the
light travels within the plate,

Am� nB � mn : �4�

Similar relations are valid for any other possible light
propagation path, for example AcgB or AdfB. But because
indices of refraction inside and outside the plate are,
respectively, n � ÿ1 and n � �1, the total optical path for
the light traveling from point A to point B is zero for any
possible propagation path according to expression (3). At the
same time, the light propagation time from A to B is
essentially nonzero as already mentioned above.

Now focusing light from a point source on the one side of
the plate to a point on the other does notmean that the plate is
a lens. Such a plate is an ideal optical device which transfers
the image of an object from the space of objects to that of
images without any distortion. But such a transfer is only
possible for objects whose distance from the plate does not
exceed the plate's thickness. The plate clearly cannot focus a
parallel beam of light, which comes from infinity, to a point.
However, the properties of such a plate are undoubtedly very
interesting and might have practical implications.

An important point to have in mind when evaluating
negative index of refractionmaterials is that they are bound to
be frequency dispersive. To see this, note that if e and m are
both zero, then in the absence of dispersion the total energy of
the material,

W � eE 2 � mH 2 ; �5�

is negative. In the presence of frequency dispersion, however,
the expression (5) is written somewhat differently,

W � q�eo�
qo

E 2 � q�mo�
qo

H 2 : �6�

It is readily seen that the derivatives q�mo�=qo and q�eo�=qo
are positive if the frequency dispersion relations for e and m
are taken in the following sufficiently general form:

m � 1ÿ A2
m

o2
; �7�

e � 1ÿ A2
e

o2
: �8�

If we set

A2
e � A2

m � A2 > o2 ; �9�

then the index of refraction will be negative, and the phase
velocity

vph � c

1ÿ A2=o2

and the group velocity

vgr � c

1� A2=o2

will be related by the relation

c

vph
� c

vgr
� 2 : �10�

For waves propagating in a negatively dispersive medium
we must put a minus sign in front of the wave vector k. In
absorbing media, however, the vector k has not only a real

A O

f

n

g

B

c

m

d

Figure 2. Propagation of light from object A to image B through a plane-

parallel plate of material with e � m � n � ÿ1, in a vacuum.
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part but also an imaginary part. The reason is that expres-
sions for e and m have imaginary parts. So, the question arises:
should the sign in front of the imaginary part of the wave
vector be changed if the sign in front of its real part is
changed?

Let us write the expressions for e and m in the form

e � e 0 � ie 00 ; m � m 0 � im 00 : �11�

It is readily seen that for low damping the expression for k
becomes

k � k 0 � ik 00 �
�����������������������������������������
�e 0 � ie 00��m 0 � im 00�

p
�

���������
e 0m 0

p �
1� i

2

�
e 00

e 0
� m 00

m 0

��
: �12�

From equation (12) it is readily seen that, by itself, changing
the signs of the real parts of e and m does not automatically
change the sign of the imaginary part of the wave vector. To
achieve this, it is necessary to change the signs of the
imaginary parts of e and m, which corresponds to the
transition from a positively to a negatively absorbing
material Ð similar to what takes place in quantum ampli-
fiers, for example. Such a transition generally has no relation
to the possible transition from ordinary materials with
positive refraction to negative refraction materials.

The way we assess the implications of this new concept, a
negative refraction material, crucially depends on whether
such materials are really available. This question already
arose during the publication of Refs [3, 4]. We had at one
time devoted much effort to obtaining a negative refraction
material using the magnetic semiconductor CdCr2Se4 as a
basis, but met with no success because of considerable
technological difficulties in synthesizing this material. Nor
did our analysis [5] of the properties of the exotic mixture of
electric and magnetic charges produce anything worth
mentioning here.

A breakthrough came, as already mentioned in the
beginning of this talk, with the announcement in Refs [1, 2]
of a composite material which could be characterized by
negative values of e and m and hence by a negative value of n.
The material consisted of many copper posts and rings
arranged in a strict geometric pattern. The posts and rings
were in facts antennas which responded to an electric and a
magnetic field, respectively. The size of and separation
between these elements was smaller than the wavelength,
and the system as a whole had negative effective values of e
and m.

Reference [2] reported the direct measurement of the angle
of refraction for a prism made of this composite, which
showed the relation (1) with negative n to be entirely valid
for this material. These experiments were repeated by at least
two independent teams with the same positive result later on
[10, 11].

The somewhat unusual electrodynamics of the newly-
emerging class of materials has led to a number of contro-
versial statements in the literature. For example, it is argued
[12] that negative refraction takes place only for the phase
velocity and that the group velocity under all circumstances
obeys the usual positive-n law of refraction. The authors are
not embarrassed by the fact that differently-directed phase
and group velocities is a typical feature of optically aniso-
tropic media which apriori cannot have a scalar index of

refraction. The mistake of the authors of Ref. [12] is that they
confused the direction of the group velocity with that of the
perpendicular to the surface of constant amplitude when
considering amplitude-modulated wave propagation in a
medium. This mistake is analyzed in sufficient detail and
explained in Ref. [13].

There is one more question which arises in close connec-
tion with the emergence of negative refraction materials. This
is the problem of overcoming the diffraction limit or, equally,
of amplifying the so-called evanescent modes, to use a
somewhat different terminology. The first to address this
problemwas Pendry [14], who argued that negative refraction
materials can support waves in which kz, the wave vector
component along the propagation direction, is purely
imaginary,

k2z �
o2

c 2
ÿ k2x < 0 : �13�

This inequality holds for very large kx, i.e., for very short
wavelengths.

In materials with a positive value of n the amplitude of
such waves (evanescent modes) decays exponentially along
the z axis in accordance with Eqn (13), and this is precisely
why optical systems cannot image objects much less than a
wavelength in size. However, it is argued in Ref. [14] and in
many other works that followed that in negative refraction
materials waves with large kx are amplified rather than
attenuated. This statement is equivalent to choosing in the
relation

kz � �i
����������������
k2x ÿ

o2

c 2

r
�14�

the sign `ÿ' in front of the imaginary rootÐ rather than `�' as
usual. The author of Ref. [14] introduced the concept of a
`superlens' for a device similar to that depicted in Fig. 2 and
argued that there is no classical diffraction limit constraint for
this device.

Statements like this are perhaps most convincingly
disproved by the electron modeling study [15], which shows
that in the case of negative n evanescent modes can only
propagate for distances much smaller than the wavelength Ð
the same as usual. This, however, does not rule out the need
for fully understanding the propagation of such modes in the
case of negative n.

We are now just at the beginning of the path leading us to
a new area of electrodynamics, a fascinating and promising
one. The number of researchers and research groups and
organizations involved in this theme is avalanching, and so is
the number of publications in the area. The interested reader
is referred to the Internet web site http://physics.ucsd.edu/
�drs/left_home.htm for a very comprehensive collection of
materials on the subject. The author's papers [3 ± 6] are
available at http://zhurnal.ape.relarn.ru/� vgv in both Rus-
sian and English.

Note in proof
At a recent seminar on negative refraction materials held in
Arlington, USA, the creation of composite materials capable
of operating at frequencies of up to 300 GHz was reported,
and a talk on the first experiments aimed at the fabrication of
a composite magnetic material with individual elements
about 35 mm in size was presented.
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