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Abstract. Basic physical characteristics of doubly heavy bar-
yons are examined, including spectroscopy (which is treated in
the potential approach and within the QCD sum rules frame-
work), production mechanisms for various interactions (the
fragmentation model with preasymptotic twist corrections of
higher order in the baryon transverse momentum), inclusive
decays and lifetimes (operator expansion in the inverse powers
of the heavy quark masses), and exclusive decays (in the QCD
sum rules framework). The effective theory of heavy quarks is
extended to systems with two heavy quarks and one light quark.
The masses, decay widths and yields of doubly heavy baryons
are calculated for the experimental facilities now being oper-
ated or planned. Prospects for the detection and observation of
such baryons are discussed. The most interesting physical
effects involving hadrons are analyzed and their impact on the
theory of heavy quark dynamics is considered.

1. Introduction

After the high-precision studies of the neutral intermediate
Z-boson at LEP (CERN) and observation of the t-quark at
FNAL, the investigation of electroweak interactions in the
sector of heavy quarks is one of the most important issues of
elementary particle physics. Precisely in such studies within
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the framework of the Standard Model [1] can there a full
picture of effects related to the irreversibility of time at
energies below the scale of electroweak symmetry violation
be achieved.

Comparative analysis of the decay processes of hadrons
containing heavy quarks, involving violations of combined
CP-parity with respect to charge inversion (C) and mirror
reflection of space (P), has become possible on the basis of
very precise measurements owing to the commissioning of
specialized facilities such as Belle (KEK) and BaBar (SLAC),
as well as the upgraded detectors CDF and D0 at FNAL. The
results of such experiments will, probably, permit the addition
of an essential hitherto absent link to the Standard interaction
model, namely, to give a complete description of the charged
currents of three quark generations [2], which represents a
most important problem at the same level as observation of
the scalar Higgs particles providing for the mechanism of
electroweak symmetry violation and the investigation of
neutrino currents.

The problem of high-precision investigation of the
electroweak properties of heavy quarks raises a profound
theoretical issue, namely, the description of the dynamics of
strong quark interactions bringing about the formation of
bound states — hadrons: mesons and baryons, since the
observable characteristics (for example, rare decays exhibit-
ing effects of CP-symmetry violation) are related precisely to
bound states and it is necessary to have clear and reliable ideas
of the direct relationship between these characteristics and the
interaction parameters of heavy quarks. Here, the fine effects
of electroweak physics may be identified only in the case of
high-precision description of the dominant contributions of
quantum chromodynamics (QCD).

We are actually dealing with the general problem of
describing quark confinement in QCD, which can be
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investigated fruitfully not only in spectroscopy and in
production and decay processes of exotic hybrid and glueball
states [3], but also in studying characteristics of hadrons with
heavy quarks. In practice, the measured decay asymmetries of
heavy hadrons and so on are expressed in the form of
functions of such characteristics as, for example, charged
heavy quark currents, and these functions depend parame-
trically on the hadron matrix elements of certain quark
operators. The latter often cannot be determined directly
from the broad variety of diverse experimental data, so thata
detailed theoretical analysis is required of such matrix
elements in QCD.

The more complete the set of bound heavy quark states
studied, the broader the range of variability of the conditions
in which QCD forces act on the heavy quarks and the more
advanced must the theoretical methods for describing
hadrons containing heavy quarks be, in order to obtain a
consistent description of various quark systems. From this
point of view, in our opinion, a new field of activity is
presented by baryons containing two heavy quarks. Theore-
tical prediction of their characteristics seems to represent an
interesting and topical problem.

Doubly heavy baryons extend in a natural manner the
sequence of long-lived heavy hadrons both with a single heavy
quark (D-, B-mesons and A, Z., E., Q., Ap baryons) and with
two heavy quarks (the B.-meson) and may resemble heavy
quarkonia cc and bb in the character of their strong
interactions. From a practical point of view, one can expect
doubly heavy baryons to be observed in modern experiments
performed at hadron colliders of high luminosity (Tevatron,
LHC), since their yield should be comparable to that of the
doubly heavy meson containing quarks of differing flavors
(the B.-meson'), and the methods for detecting rare decays of
heavy particles have recently become extremely effective
owing to the development of the technique of vertex
detectors, which was successfully demonstrated by the first
experimental observation of the B.-meson by the CDF
collaboration [5].

The construction of theoretical methods for describing
QCD dynamics in the case of heavy quarks is based on a
physically clear definition: a quark Q is heavy, if its mass mg
very significantly exceeds the scale of quark confinement in a
bound state, Aqcp: Mg > Aqcep. Thus, in the problem of
strong interactions of heavy quarks, i.e. in calculations of
hadron matrix elements for the quark operators, there exists a
small parameter Aqcp/mg < 1 which can serve for develop-
ing formal approximate methods. Thus, in hard subprocesses
involving virtualities of the order of the heavy quark masses
(for example, in heavy quark production processes) it is the
QCD coupling constant that is small [os oc In™" (mg/Aqcp )]s
so that the standard technique of perturbation theory in the
coupling constant can be applied.

Another fruitful method makes use of the operator
expansion in inverse powers of the heavy quark mass. In this
approach, calculation of the hadron matrix element for the
quark operator results in summation of the matrix elements
of operators, the properties of which imply the existence of a
hierarchy with respect to the small parameter Aqcp/mgp < 1,
i.e. suppression of a number of contributions provided by
powers of Agcp/mg, since interaction in a bound state
containing a heavy quark is characterized by energies close
to Aqcp, i.e. by the inverse size of the hadron. This expansion

! For a review of the physics of B.-mesons see Ref. [4].

yields a complete description of hadron systems containing a
single heavy quark.

In the presence of two heavy quarks in the hadron (side by
side with the scale of nonperturbative interactions) there also
exists such an energy characteristic as the momentum transfer
in a Coulomb-like interaction, i.e. exhibiting a virtuality
u~ oasmp, and the relative velocity v of motion of the two
heavy quarks in the hadron is determined by the relatively
small QCD coupling constant: v ~ o5, where the coupling
constant oy is taken on the scale of virtualities peculiar to the
Coulomb-like interaction. Thus, in heavy quarkonium QQ’,
for example, it is the relative velocity v of the nonrelativistic
quarks that can serve as the additional small parameter to be
used in the operator expansion when calculating hadron
matrix elements.

The following three methods for calculating the properties
of bound states containing heavy quarks can be identified in
accordance with the above-indicated approach:

operator expansion in the inverse mass of the heavy quark
in QCD for calculation of the inclusive widths and lifetimes of
heavy hadrons, where corrections to the leading term are
given by external parameters [6];

QCD sum rules and nonrelativistic QCD for the two-point
correlators of quark currents in spectroscopic calculations
and for three-point correlators in estimating the form factors
of exclusive decay modes [7];

potential models applied for calculating exclusive char-
acteristics of hadrons with heavy quarks [8].

It must be noted that sum rules are also essentially based
on operator expansion, but the external parameters they
involve are only fundamental quantities, such as the masses
of heavy quarks, the norm of the QCD coupling constant and
quark —gluon vacuum condensates (unlike inclusive estima-
tions by the operator expansion, where it is necessary to give,
for example, the coupling energies of the heavy quark in the
hadron, the mean momentum squared of the heavy quark,
and so on).

Another observation consists in the fact that perturbation
theory and renormgroup relations necessary for calculating
the Wilson coefficients in the operator expansion are still
important in calculations making use of expansions in the
inverse powers of the heavy quark mass and in the relative
velocity of heavy quarks in the hadron, since these Wilson
coefficients serve as factors of the operators or matrix
elements in the expansion.

It is important to stress that in the method of operator
expansion for heavy quarks one can consider a certain actual
operator, say, the weak decay current or the product of
currents, like in the QCD sum rules, and its subsequent
expansion. However, it turns out to be quite useful, also, to
apply the method of effective field theory, in which the
expansion of the heavy-quark QCD Lagrangian itself serves
directly as the construction starting point. In this approach it
is possible to single out the leading term in the effective
Lagrangian and to interpret the subsequent terms of the
expansion as perturbations. In this case the leading term
depends on the character of the problem, i.e. on the actual
convergence of the estimates of physical quantities calculated
in the effective Lagrangian.

Thus, in the case of hadrons with a single heavy quark,
heavy quark effective theory (HQET) was developed [9], in
the leading term of which one can neglect the binding energy
of the heavy quark in the hadron, in particular, its kinetic
energy. It is important to note that, first, the effective
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Lagrangian in the HQET leading approximation exhibits
symmetry: heavy quarks with identical velocities, equal to
that of the hadron in which they are bound, can undergo
permutation (symmetry in the heavy quark flavors), and the
spin of the heavy quark is decoupled from the interaction with
virtual gluons, since the current is determined by the quark
velocity v, (spin symmetry).

Second, the leading term of the effective Lagrangian leads
to renormgroup behavior differing from complete QCD.
Thus, for example, currents being conserved in complete
QCD and, consequently, having zero anomalous dimensions
become divergent upon transition to effective theory fields.
The same is true for the correction terms of the effective
Lagrangian: the respective Wilson coefficients in effective
theory have nonzero anomalous dimensions. Thus, we arrive
at a situation in which for formulating the theory it is
necessary to set an infinite number of normalizing conditions
for the Wilson coefficients, the conditions that are anomalous
in a renormgroup respect.

Quite a clear physical reason underlies this problem: in the
effective theory constructed for fields with small virtualities it
is necessary to introduce a cutoff in the ultraviolet region on a
scale of the order of the heavy quark mass, since in the case of
large virtualities the assumptions made when developing the
theory are erroneous. The effective theory having been
obtained from complete QCD, one should consider, from a
constructive point of view, the Lagrangians of complete QCD
and of effective theory to be equal on a scale p,,4 of the order
of the quark mass mg. This means that in this order in the
QCD coupling constant it is necessary to calculate (with due
account of the respective loop corrections) the effective action
in QCD and to pass on in the latter to expansion in the inverse
powers of the heavy quark masses. The Lagrangian obtained
has to be equated to the effective Lagrangian calculated in
effective theory in the same order in the coupling constant
with the anomalous Wilson coefficients on the scale py,,.q4,
which results in matching conditions for the unknown
integration constants of the renormgroup equations for the
Wilson coefficients in effective theory. After having done the
matching, we remove arbitrariness in the choice of finite
renormalization terms in the effective Lagrangian, i.e. it is
determined for u below the scale py,,4 of matching with
complete QCD. Thus, a consistent scheme of effective
theory, HQET, has been developed for hadron systems
containing a single heavy quark together with light ones.

The physical situation in the case of heavy quarkonia
consisting of a heavy quark and a heavy antiquark is
somewhat different. Indeed, the Coulomb interaction of
nonrelativistic heavy quarks results in the quark kinetic
energy turning out to be comparable to their potential
energy, while it would be naive to expect the kinetic term
p?/2myg to have to be suppressed by the inverse mass of the
heavy quark. However, since in the case of the Coulomb
exchange p ~ a,mp, no such suppression of kinetic energy
exists and the wave functions of the heavy quarkonia depend
on the quark masses, i.e. on their flavors.

Within the formal approach of effective theory for
nonrelativistic quarks in heavy quarkonium, the leading
term of the Lagrangian is determined with due account of
the contribution from kinetic energy, and we arrive at
nonrelativistic QCD (NRQCD) [10]. Unlike HQET, the spin
symmetry of the leading term in the effective Lagrangian is
conserved in NRQCD, but no symmetry exists with respect to
the flavors of heavy quarks, since the contribution from

kinetic energy depends explicitly on the quark masses. Like
in HQET, the Wilson coefficients in the NRQCD effective
Lagrangian must be matched with the complete QCD on a
scale of the order of magnitude of the heavy quark mass, and,
generally speaking, the Wilson coefficients have anomalous
dimensions differing from the anomalous dimensions in
HQET, since the kinetic energy results in a different, as
compared with HQET, ultraviolet behavior of the quark
operators.

Operator expansion also underlies the potential
approach. Thus, static potential signifies expansion of the
QCD effective action for two infinitely heavy sources j that
are at a fixed distance r from each other, so that the expression
I'(j)=—V(r) T, where T — oo is the time of action of the
sources, holds valid for the effective action. In the case of real
problems, a long time signifies that the virtualities of the
external gluon fields interacting with the heavy quarks are
much smaller than the inverse distances, i.e. 4 < 1/r ~ mgu.
This usability condition of the potential approach may be
expressed in terms of effective theory, which is called potential
nonrelativistic QCD (pNRQCD) [11].

Construction of pNRQCD theory is based on matching,
at p ~ mgv, the NRQCD and the effective actions with
external supersoft fields in the multipole QCD expansion
and with nonrelativistic quarks with a leading term deter-
mined both by the kinetic energy and the Wilson coefficient.
The latter has the meaning of a static potential depending on
the distance r between the quarks. Thus, the potential
approach has the status of an operator expansion, while the
static approximation for the potential is determined by the
convergence of this expansion in pNRQCD.

Theoretical investigation of baryons with two heavy
quarks is also interesting because to describe them it is
necessary to develop and apply a complex approach that
will combine the features of HQET, NRQCD and pNRQCD,
since within the system both the interaction of the light quark
with the heavy quarks and the interaction between the two
heavy quarks are essential (Fig. 1).

In this review we deal with the problem of describing
bound baryonic states Q0Q'q = Zp¢+ with two heavy quarks
0, Q' and a light quark ¢ = u, d on the basis of factorization
of interactions with virtualities that are determined by:

the scale of confinement, Aqcp, for nonperturbative
interactions of the heavy quarks with the light one and of
the quarks with vacuum quark — gluon condensates;

the size of the heavy diquark, r4q ~ 1/(mg,gv) (Where
diq = QQ’), composed of two nonrelativistic heavy quarks
moving with a small relative velocity v < 1, for interactions
between the heavy quarks;

the scale of hard gluon corrections at energies of the order
of magnitude of the heavy quark masses, while the approx-
imation considered the leading one is the approximation for
which there exists a hierarchy of QCD interaction scales in
=00’ 1.€.

(1.1)

Within this approach, the doubly heavy diquark is
perceived by the light quark as a local heavy source of the
gluon field (antitriplet over the QCD color group), while the
diquark actually represents a system of two nonrelativistic
quarks in the weakly changing low-frequency field of the light
quark. Thus, for the motion of the light quark and the
diquark one can apply the effective HQET theory, whereas
for the motion of the heavy quarks in the diquark one has to

Aqgep < mov < Ny .
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Figure 1. Character of strong interactions in the doubly heavy Ey. baryon.
The quark Compton lengths g = 1/my, the size of the heavy diquark
rpe ~ 1/(mgv), and the scale of nonperturbative confinement of the light
quark, rqep = 1/Aqcep, are ordered as A, ~ Ac/3 = rve/9 = roep/27.

modify NRQCD and pNRQCD in order to deal with the
nonrelativistic fields of the heavy quarks in the antitriplet,
instead of the singlet, state.

On the basis of the quark —diquark picture of interactions
we consider various physical aspects of baryons with two
heavy quarks. In Section 2, the mass spectrum of Egpg:
baryons is constructed within the potential approach, and
the characteristics are computed of the ground and excited
levels both in the heavy diquark system and in the light
quark —diquark system. We show that there exists an entire
family of the Zpg- levels including quasi-stable states for a
heavy diquark composed of identical heavy quarks. In this
case the Pauli exclusion principle dictates quite definite values
of the total quark spin: the spin is unity for P-even coordinate
wave functions, and zero for P-odd ones, since the antitriplet
color state of the diquark is antisymmetric with respect to
permutation of the color indices of the heavy quarks. With
due account of the small size of the diquark, of the
nonrelativistic motion of the heavy quarks and of the small
ratio Aqgcp/mg, the transition operators of the excited
P-wave diquark to the ground S-wave state with the emission
of a m-meson turn out to be suppressed, since in such a
transition both the spin and the orbital states of the heavy
diquark must change. We define the range of applicability of
the quark —diquark approximation for the calculation of the
Epo' mass spectra within the potential approach.

The two-point NRQCD sum rules for baryon currents
with two heavy quarks and the stability criterion of the results
following from the sum rules for masses and the 2y baryon
coupling constants are considered in Section 3. Reliable
results can be obtained if one takes into account both the
quark and gluon condensates and their product, i.e. the
combined condensate of higher dimension. The masses and
coupling constants have been calculated for the ground states
of Zp¢' baryons and of doubly heavy baryons with strange-
ness Qgpp-, and reliable predictions have been made for the
mass splitting M[Epo'| — M[Qpo’]. The anomalous dimen-

sions of baryon currents in NRQCD have been obtained in
the two-loop approximation, which permits one to estimate
the baryon coupling constants with baryon currents not only
in NRQCD, but also in complete QCD.

The production mechanisms of Zp¢+ baryons are dealt
with in Section 4. At high energies, the inclusive production of
doubly heavy baryons in ete™-annihilation can be described
(owing to factorization of interactions within the quark—
diquark approach) as the sequential fragmentation of a heavy
quark into a heavy diquark, and of the diquark into a baryon.
Here, the virtualities in the first subprocess are determined by
the heavy quark masses, and upon factorization of the soft
motion of the heavy quarks in the diquark one can apply
QCD perturbation theory to obtain the analytical form of the
fragmentation functions into diquark states with differing
spins and orbital quantum numbers. With due account of the
difference between the diquark and heavy quarkonium in
color structure, such calculations repeat the calculations of
fragmentation into doubly heavy mesons with an accuracy up
to a color factor. Assuming the existence of a local heavy
diquark field in its interactions with the light quark and
applying the approximation of dominant contribution from
fast valence quarks for estimation of the baryon field
components we have developed a QCD-motivated perturba-
tion model for diquark fragmentation into a baryon and have
deduced the analytical form of the fragmentation functions of
vector and scalar diquarks into the Epp/ baryon with spin
1/2. Calculations have been done of exclusive baryon pair
production cross sections in ete ™ -annihilation in the vicinity
of the threshold.

The analysis turns out to be more complicated for the
production mechanism of Zgp baryons in hadron collisions
in quark—antiquark annihilation (low energies, fixed-target
experiments) and gluon —gluon fusion (high energies, hadron
colliders) subprocesses. The enhanced complexity is due to
the large number of diagrams in the leading approximation —
in the fourth order in the QCD coupling constant. Applying
the numerical method we show that at high energies of the
parton subprocess and at transverse momenta greatly
exceeding the baryon mass the complete set of diagrams in
the given order of QCD perturbation theory results in
factorization of the hadron production of the heavy quark
and its subsequent fragmentation into a doubly heavy
diquark with the universal fragmentation function computed
analytically within the framework of perturbative QCD. This
points to the applied method being self-consistent in
perturbation theory.

The advantage of dealing with the complete set of
diagrams, which is dictated by gauge invariance, consists in
the possibility of computing not only the leading (in
transverse momentum p ) contribution from fragmentation
exhibiting a 1/p? dependence, but also the corrections —
higher twists in the transverse momentum. Here, it turns out
to be possible to obtain a certain estimate for the transverse
momentum that separates the fragmentation and recombina-
tion regions (of higher twists), and it becomes clear that the
statistics of events involving the production of doubly heavy
Epo' baryons accumulates mainly at low transverse
momenta, i.e. in the recombination region. Estimates have
been made of the total and differential production cross
sections for Epp+ baryons in hadron experiments at various
energies and, also, of the exclusive pair production cross
section of doubly heavy diquarks in quark-—antiquark
annihilation.
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The method of operator expansion in the inverse powers
of the heavy quark masses is applied in Section 5 to a detailed
analysis of the lifetimes and inclusive decay widths of Egpg-
baryons. The following three effects play an essential part in
the analysis of the decay mechanisms of heavy quarks
composing doubly heavy baryons:

there arise significant corrections to the spectator decay
widths of heavy quarks, when account is taken of the motion
of the quarks in a small-sized heavy diquark, and, conse-
quently, the relative momenta of the quarks, p ~ mgv, are
noticeably higher than the momentum k ~ Aqcp of a heavy
quark in a hadron with a single heavy quark, since
mgv > Aqcp;

the nonspectator contributions due to Pauli interference
between the decay products of a heavy quark and the valence
quarks in the initial state may amount to 30— 50% of the total
width, while a feature peculiar to the antisymmetric baryon
color function consists in the possibility of the common sign
of the interference term being either positive or negative?;

weak rescattering of quarks in the initial state (together
with Pauli interference) arises in the operator expansion as an
operator of highest dimensionality, which is enhanced by
two-particle phase space as compared with other operators of
the same dimension, for which three-particle phase space in
the final state is suppressed, if it is expressed in terms of the
heavy quark mass; this contribution yields up to 30% of the
total width for baryons with a charmed quark.

Thus, it has been shown how the total lifetimes of baryons
with two heavy quarks become ordered, the parametric
dependence of estimates of total and inclusive widths upon
the physical parameters of the hadron system has been
revealed: the heavy diquark compactness determines its
wave function — a factor in the estimation of nonspectator
decays, the heavy quark masses in the operator expansion are
essentially correlated for hadrons with different quark
compositions, so that the known experimental data on
semileptonic, nonleptonic and total widths reduce the
uncertainty in the estimates. At the same time, experimental
data on the inclusive widths and lifetimes of doubly heavy
baryons may significantly improve the qualitative and
quantitative knowledge about heavy quark dynamics, espe-
cially in the case of a consistent analysis of the data on heavy
hadrons with one and with two heavy quarks.

The investigation of exclusive semileptonic and nonlep-
tonic decays under the assumption of factorization within the
framework of three-particle NRQCD sum rules permits one
to obtain relations for transition form factors (i.e. hadron
matrix elements) from the spin symmetry of the effective
Lagrangian, to analyze the uncertainties in calculations and
to draw a comparison with the predictions of potential
models for exclusive decays.

In Conclusions we sum up our results in the physics of
baryons with two heavy quarks. The predictions made not
only pave the way for purposeful searches for such baryons,
but also lay down the basis for a more detailed theoretical
analysis of physical effects of unquestionable interest for
hadron systems with two heavy quarks, and especially for
obtaining reliable predictions concerning total and exclusive
decay widths. We also analyze the feasibility of experimental
observation of doubly heavy baryons.

2 The common sign is determined by the factors of the antisymmetric
permutation of fermions and of the color factor.

2. Spectroscopy of doubly heavy baryons:
the potential approach

In this section we analyze the principal spectroscopic
characteristics of the families of doubly heavy baryons
Epo' = 00'q (where ¢ = u,d) and Qpg’ = QQ's.

Usually, two hypotheses are discussed in the description
of baryons within the quark potential model: the hypothesis
of pair interquark potentials, and the hypothesis of a string-
like picture involving a string node. The latter is motivated by
consideration of a Wilson loop, while the model with pair
interactions is rather based on phenomenological approach
(by analogy with the simple idea of a linear superposition of
two-quark forces). From our point of view, such a lineariza-
tion in the conditions of nonperturbative quark confinement
that manifestly exhibit a nonlinear character represents an
extremely rough approximation, including the case when two
of the constituent quarks in the baryon are heavy. Never-
theless, without going into details of models with pair
interactions in baryons, we note that (upon completion of a
program providing detailed quantitative spectroscopic pre-
dictions) both the hypotheses permit object comparison
which will become important after the first experimental
data are obtained, since in a number of positions the
theoretical constructions lead to clearly identifiable differ-
ences.

The general approach to calculating the masses of
baryons with two heavy quarks within potential models is
presented in papers [12], where the hypothesis of pair
interaction between the quarks composing the baryon under-
lies the physical basis of the consideration and then is applied
within the framework of the three-body problem. Proceeding
from the above, clear consequences were derived for the mass
spectra of doubly heavy baryons. Thus, the factorization
approximation for the motion of the doubly heavy diquark
and the light quark turned out to be quite rough in the case of
charmed and beauty quark masses being preset: it resulted in
the mass of the ground state and the masses of excited levels
differing significantly from the estimates obtained by the
calculating method for the respective three-body problem.
For example, it easy to show that conventional introduction
of Jacobi variables in the oscillator potential of pair
interactions leads to a change in the vibration frequency
® — /3/2w as compared to naive expectations based on
diquark factorization.

There exists another opinion about the problem of three-
quark bound states in QCD: the concept of a quark —gluon
string. In the stringlike picture of a doubly heavy baryon,
presented in Fig. 2, the aforementioned conclusions based on

0

Ql

Figure 2. Representation of a QQ’q baryon containing two heavy quarks
with color fields forming strings between the heavy and light quarks, so
that the picture of pair interactions is violated and an additional center-of-
mass point is introduced, which is close to the center of mass of the two
heavy quarks.
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the hypothesis of pair interactions and concerning the
structure of the mass spectra of such baryons are essentially
modified. Indeed, if one considers the center of the string
(Fig. 2), which is very close to the center of mass of the doubly
heavy diquark, it is seen that the light quark interacts with the
heavy diquark as a whole, i.e. when the string tension
coincides in magnitude with the tension in the heavy—light
meson Qg. Consequently, the two hypotheses about the
nature of strong interactions in baryons containing two
heavy quarks (pair interactions or the stringlike picture) lead
to clearly distinguishable predictions for the mass spectra of
doubly heavy baryons both in the ground state and at excited
levels. The only criterion for testing these assumptions
consists in experimental observation and measurements.

In the present review we follow the approximation of a
doubly heavy diquark, which is quite reasonable, as we
already explained above. To be more convincing we note
that considering the masses of baryons with two heavy quarks
within the QCD and NRQCD sum rules (see Section 3) results
in the ground states exhibiting masses that are in good
agreement with the values obtained within the potential
approach with factorization of the heavy diquark.

The qualitative picture of the production of bound states
in the QQ’q system is clarified through the existence of two
scales of distance that are given by the size rgiq of the doubly
heavy QQ’ diquark subsystem in the antitriplet state with
respect to color and by the confinement scale Agcp of the
light quark ¢:

rdiq Aqep € 1, Agep < myg

In these conditions a compact diquark QQ" is perceived by
the light quark as a static source of the colored QCD field in
the diquark local field approximation. From this standpoint,
one can make use of a number of reliable results obtained with
the models of heavy mesons with a single heavy quark [i.e.
local static source in the antitriplet representation of the
SU(3), group]: with potential models [§] and with heavy
quark effective theory (HQET) [9] in the expansion in the
inverse heavy quark mass.

We apply here the nonrelativistic quark model with the
Buchmiiller— Tye potential [13]. In this case one can theore-
tically speak of a rough approximation for the light
(mI® < Aqcp) and therefore relativistic quark in  the
system with a finite number of degrees of freedom and
instantaneous interaction V(r). This is due to confinement
implying the light quark being dressed in a sea (infinite
number of gluons and quark pairs), and nonperturbative
effects with correlation times tqcp ~ 1/Aqcep remain beyond
the framework of the potential approach. Phenomenologi-
cally, however, the introduction of a constituent mass
m}? ~ Aqcp as the principal parameter determining the
interaction with the QCD condensates permits one to
successfully adjust the nonrelativistic potential model with a
high precision (8M = 30—40 MeV) on the basis of available
experimental data, which makes such an approach quite a
reliable instrument for the prediction of masses of hadrons
containing heavy and light quarks.

As to the diquark QQ’, with the exception of two very
significant peculiarities it is quite similar to heavy quarko-
nium QQ': QQ'[3.] is a system with open color, and in the
case of quarks of the same flavor (Q = Q) it is necessary to
take the Pauli exclusion principle into account for identical
fermions. While the second peculiarity can be readily seen to
lead to the total quark spin (S =0) being forbidden for

symmetrical P-even space wave functions Ygiq(r) of the
diquark (angular momentum Lgiq = 21, wheren =0,1,2,...
is a nonnegative integer) and to S = 1 for antisymmetric P-
odd functions Piq(r), i.e. Lgiq = 2n+ 1, the nonzero color
charge of the system raises two problems.

First, the confinement hypothesis in the form of a
confining potential (infinite growth of energy with the size
of the system) is, generally speaking, not applicable to
interactions inside such an object. It is physically difficult,
however, to imagine a situation when a large colored object of
dimension r > 1/Aqcp possesses limited self-action energy
and at the same time, while interacting with another color
source inside a white [singlet in SU(3)_] state, is closed inside a
hadron of dimension r ~ 1/Aqgcp. Moreover, within the
framework of the hadron string picture for baryons that
proved to be successful, the string tension in the diquark
with an external end is only two times smaller than in the
quark —antiquark pair g¢’ of a meson, while the diquark
energy also grows linearly with its size, so an effect occurs that
is similar to quark confinement.

Moreover, in potential models one can consider quark
coupling to be realized by the effective one-particle exchange
of a colored object in the octet representation SU(3),, (usually,
the sum of scalar and vector exchanges is taken), so that once
again the potentials in the singlet (g¢’) and antitriplet (¢q")
states only differ by the color factor 1/2, which points to the
presence of a confining potential (a linearly growing term) in
the QCD-motivated model for the heavy diquark QQ’[3.]. In
this section we shall apply the nonrelativistic model with the
Buchmiiller — Tye potential for the diquark, too.

Second, in the singlet state 0Q with respect to the color
the total quark spin S and angular momentum L are
conserved separately, since the contributions from the QCD
transition operators between the levels determined by these
quantum numbers are suppressed. Indeed, within the frame-
work of the QCD multipole expansion [14], the amplitudes of
chromomagnetic and chromoelectric dipole transitions are
suppressed by the inverse heavy quark mass but, moreover, a
decisive role is played by white radiation of the object, i.e. at
least the emission of two gluons (an excess order in 1/my),
and by taking into account the real phase space in the physical
spectrum of massive hadrons, unlike the case of the massless
gluon. On the other hand, the probability of an admixture of a
hybrid state, for instance, with the octet subsystem QQ’ and
an additional gluon, ie. of a Fock state |QQ’[8:]g), is
suppressed owing to the small size of the system and the
nonrelativistic motion of the quarks (for details see Ref. [10]).

In the antitriplet state QQ' with respect to color the
emission of a soft nonperturbative gluon is not forbidden in
the transitions between the levels determined by spin Sg;q and
angular momentum Lgiq in the diquark, if no other forbid-
dings or small suppression parameters exist. If the quarks
composing the diquark have identical flavors, then the Pauli
exclusion principle results in transitions being possible only
between the levels that either differ simultaneously in spin
(AS4iq = 1) and in angular momentum (ALgiq = 2n+ 1) or
occupy the same row of radial excitations or those with
ALdiq = 2n.

While in the second case the transition amplitudes are
suppressed by the small recoil momentum of the diquark as
compared to its mass, in the first case the transition operator
changing the diquark spin and its angular momentum has an
excess order of smallness either due to the additional factor
1/myg or to the small size of the diquark, which results in the
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presence of quasi-stationary states with quantum numbers
Sdiq and Lgiq. In the diquark bc with quarks of differing
flavors the operators of QCD dipole transitions with the
emission of a sole soft gluon are not forbidden, so the excited-
state lifetimes can be comparable to the formation times of a
bound state or to the inverse separations between the levels
themselves, and in this case one cannot definitely claim that
there exists a set of diquark excitations with definite spin and
angular momentum quantum numbers>.

Thus, in this review the existence of two physical scales is
used in the form of factorization of the wave function in the
problem with a heavy diquark and a light constituent quark
within the framework of the nonrelativistic quark model, so
that the problem of computation of the mass spectrum and
the characteristics of a bound state in the system of a doubly
heavy baryon reduces to two standard problems of searching
for stationary energy levels in a two-body system. The
relativistic corrections dependent on the quark spin are then
taken into account for each of the two subsystems studied.

The threshold decay energy into a heavy baryon and a
heavy meson can be considered a natural boundary for the
domain of existence of stable states in doubly heavy baryons.
As is shown in Ref. [15], the presence of such a threshold in
various systems may be accompanied in QCD by the existence
of a universal confinement characteristic — a limiting
distance between quarks, the enhancement of which results
in the quark—gluon field losing its stability, i.e. in the
generation of valent quark —antiquark pairs from the sea.

In other words, a hadron string longer than the critical
length has a high probability (close to unity) of decaying into
shorter strings. This effect can be taken into account within
the potential approach by the investigation of excited diquark
levels being restricted to the region where the size of the
diquark is smaller than the critical distance: rgiq < rc =
1.4—1.5 fm. Besides, the model of pair interactions with the
diquark structure singled out can be considered reliable only
when the size of the diquark is smaller than the distance to the
light quark: rgiq < r1.

A peculiarity of the quark —diquark picture of the doubly
heavy baryon consists in the possible mixing of diquark
higher excited states with differing quantum numbers owing
to their interaction with the light quark, so in this case it is
difficult to speak of definite quantum numbers of the
excitations. Below, we shall discuss this mechanism and the
character of such an effect in detail.

Section 2.1 presents the general procedure for computing
the mass spectrum of doubly heavy baryons within the
framework of the above-formulated assumptions taking into
account the quark spin-dependent corrections to the QCD-
motivated potential, in Section 2.2 the results of numerical
estimations are given, and our conclusions are briefly outlined
in Section 2.3.

2.1 The nonrelativistic potential model

As noted in the Introduction, the problem of computing the
mass spectrum of baryons containing two heavy quarks
reduces to sequential calculation of the diquark energy levels
and, then, of the energy levels of a point diquark with the
obtained parameters and of the light constituent quark
interacting with it. At each step of such calculations we

3 In other words, the existence of the gluon sea in the Zp baryon leads to
transitions between the states with different diquark excitations such as
[bc) — |beg) with ASgq = 1 or ALgq = 1 that are not suppressed.

identify two stages in the agreement with the model expan-
sion of QCD interaction in the effective theory in the inverse
quark mass, so that in the first approximation a nonrelativis-
tic Schrédinger equation is solved with a QCD-motivated
model potential, while the part of perturbation is played by
corrections dependent on the quark spin that are suppressed
by the quark masses.

2.1.1 The potential. The potential of static heavy quarks
incorporates the most important features of QCD dynamics:
asymptotic freedom and confinement. The static heavy quark
potential in the leading order of QCD perturbation theory at
small distances and with a linear confining interaction in the
infrared region was considered within the Cornell model [16],
in which a simple superposition of both asymptotic limits (of
the effective Coulomb and stringlike interactions) is intro-
duced. The observed heavy quarkonia are situated in the
region of intermediate distances, where the contributions
from both potential terms are important for determining the
mass spectra (Fig. 3). For this reason, phenomenological
approximations of the potential (logarithmic and power laws
[17, 18]), taking into account regularities in the mass spectra
[8], could be applied with success.

The quantities most sensitive to the global properties of
the potential are the quarkonium wave functions at zero point
that are related to the lepton constants and the normal-
izations of the quarkonium production cross sections.
Potentials consistent both with asymptotic freedom in one
and two loops and with linear confinement were proposed by
Richardson [19] and by Buchmiiller and Tye [13].

In QCD, the static potential is defined in an explicitly
gauge-invariant form via the vacuum expectation of the
Wilson loop [20]:

1
Vir)=— Tlgnoc ﬁ,ln Wr),
Wr = TrPexp (igff dxﬂA“) . (2.1)
r
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Figure 3. Cornell model of the static potential and the dimensions of a
number of observable heavy quarkonia with charmed (J family) and
beauty (Y family) quarks.
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Here, I' is a rectangular contour with sides 7 in time and r in
space. The gauge fields 4, are ordered along the path (symbol
P), while the color trace is normalized in accordance with
Tr(...)=Tr(...)/Trl.

We note that definition (2.1) corresponds to computation
of the effective action for two external sources fixed at a
distance r for an indefinitely long period of time 7, so in this
case ordering in time coincides with ordering along the path
(symbol P). Moreover, the contribution to the effective action
from the path lengths where the charges were separated in a
finite time to a finite distance can be neglected as compared to
the infinite contribution from V(r) 7. It must be especially
stressed that the static potential defined is, by construction, a
renorm-invariant quantity, since the action does not depend
on the normalization point by definition.

Usually, the V-scheme is considered for the effective
coupling constant, while the static quark potential is defined
in momentum space, making use of standard notation for the
structure constants of the SU(N) group, by the formula

4no V(qz)

V(g®) = —Cr e

, (2.2)

so the newly introduced quantity oy can be calculated both in
the case of large virtualities in QCD perturbation theory and
at small transferred momenta, assuming the quark confining
potential to be linear in the confinement mode.

In this section we discuss two modes for QCD forces
acting between static heavy quarks: asymptotic freedom and
confinement. Then, following the Buchmiiller — Tye method,
we formulate how these modes can be represented in a unique
p-function for the quantity oy, satisfying both limits in the
case of small and large QCD coupling constants.

2.1.2 Perturbative results at small distances. Technically, in a
given regularization scheme (say, MS) one must compute the
perturbative expansion of the static quark potential, so this
potential can be written as a Coulomb potential with a
running constant in the so-called V-scheme. As a result,
computations within perturbation theory yield matching
conditions for the MS- and V-schemes. Calculations with
the running constant o™ in 7 loops require matching with oy
inn — 1 loops. We note that the two initial coefficients of the
respective f-functions are the quantities independent of the
regularization scheme and of the computation gauge, while
all the remaining coefficients, generally speaking, depend on
the computation procedure. The V-scheme is defined for the
observable quantity, so its f-function is gauge invariant.

In QCD perturbation theory the quantity o) can be
matched with o MS:

) = 503 3, (ﬁ_j) (@iﬂz)) ”

n=0
— ) aMS(g2)\ "
=) ) a (7 41(:1 )> : (2.3)
n=0

By the time the results obtained by Buchmiiller and Tye were
published, only the two-loop f-function and the conditions
for one-loop matching with the potential were known.
Noticeable progress has been made recently in computa-
tions: the two-loop conditions for matching the V- and
MS-schemes [21, 22] can be combined with the three-loop
running constant «MS. In expansion (2.3), the coefficients @

of the tree approximation, of the one-loop contribution a;
and the new results for the two-loop contribution a, are
known (see Refs [21, 22]).

Upon introduction of & = «/(4n), the function f is
defined as a derivative in the form

da(u® . ™ o

dln,uz = ﬁ(a) == Zoﬁna +2(:u2)ﬂ (24)
so that

ﬁolflz (])\,Alsa ﬁzV:ﬁzMs—alﬁlMs+(a2—a%) (iws-

Fourier transformation leads to the following expression
for the potential in coordinate space [21]:

aMS( 2 oaMS(,2

(52 o)

L2y + 2o In (ur') + z}} , 2.5)

where 1’ = rexp yg.
Upon determination of the new running constant depend-

ing on the distance:
oy (1/r?)

Vi) = —cp

(2.6)

one can calculate its f-function from expression (2.5) [21]:

BY =B+ 5 @)
2 2 3 0> .

and the next-to-leading coefficients E()[‘/l are equal to known
values that are independent of the scheme.

We note that by construction the perturbative potential
(2.5) does not depend on the normalization point, i.e. it is a
renorm invariant quantity. However, in the case dealt with,
breaking off a QCD perturbation theory series with
coefficients that do not decrease* leads to a strong residual
dependence on the normalization point. Thus, when the
normalization point p is chosen to be in the region of the
charmed quark mass, the two-loop potential with the
three-loop running constant oS exhibits an unremovable
u-dependent additive shift that varies within broad limits.
This is a manifestation of the presence of an infrared
singularity in the QCD coupling constant, so that the
un-dependent shift in the potential has the form of a pole at
the point AQCD-

For the static potential to be unambiguous in QCD it is
necessary to deal with infrared-stable quantities. The
motivation of Buchmiiller and Tye consisted in writing
such a f-function for o that would be consistent with known
asymptotic modes at small and large distances. They
proposed to write the function in such a manner so as to
provide for an infrared-stable effective charge depending only
on two parameters: a perturbative parameter — the scale in

4 Moreover, according to studies of the renormalon the coefficients of
perturbation theory series in the perturbative potential grow factorially, so
the expansion actually has an asymptotic sense.
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the running constant for large virtualities, and a nonpertur-
bative parameter — the quark —gluon string tension.

For complete definiteness it is also necessary to specify the
coefficients of the f-function. The parameters of the Buch-
miller — Tye potential were fixed when the mass spectra of
charmonium and bottomonium were fitted_in the potential
model [23]. Thus, for example, the scale 45, ~ 510 MeV,
giving the asymptotic behavior of the QCD coupling constant
in the case of large virtualities, was determined within this
phenomenological approach. This value contradicts present-
day data on the QCD coupling constant oS [23]. Moreover,
it is easily seen that the three-loop coefficient /32V of the
p-function, assumed in the Buchmiiller — Tye model, differs in
sign and absolute value from the corresponding one calcu-
lated recently in Refs [21, 22].

Thus, it is extremely interesting to undertake modification
of the Buchmiiller—Tye (BT) potential for static quarks in
accordance with the present-day status of perturbative
calculations.

For normalization of the coupling constants in the deep-
perturbative region we shall further make use of relation (2.3)

for q> = m2.

2.1.3 Quark confinement. The nonperturbative behavior of
QCD forces between static heavy quarks at large distances r is
usually represented in the form of the linear potential (see
discussion in papers [25])
yeont(p) = kr (2.8)
that is consistent with the law of areas for the Wilson loop.
The potential (2.8) can be expressed in terms of a constant
chromoelectric field between the sources present in the
fundamental SU(N,) representation. Thus, in the Fock—
Schwinger fixed point gauge x,4"(x) =0, the gluon field
can be expressed via the field strength tensor A,(x) =
(1/2)x"G,y(0). For static quarks separated by a distance r,
the field is oriented in the direction from a quark to an
antiquark, while for the nonperturbative quark-—quark—
gluon vertex we have a unique representation consistent
with the requirement of the gluon field alignment and with
the color structure of the quark field: 0;(0) G¢,(0) Q;(0) =
(rm/r) E T}, where the heavy quark fields are normalized to
unity. Then the potential confining the quarks is written as

1
Vconf(r) =5 g CgEr.

Assuming that the same absolute value of the field
strength corresponds to formation of the gluon condensate?
(Fig. 4) and introducing stochastic color sources n; that must

5 We intend the model of vacuum in which the chromoelectric field equals
the average field E in absolute value, while its orientation is arbitrary and
varies chaotically, so when static sources are introduced at a compara-
tively large distance from each other, i.e. when the Coulomb contribution
is small compared to the nonperturbative one, the chromoelectric field is
aligned in a certain direction from the quark to the antiquark. The string
configuration differs from vacuum by changing from the disoriented
vacuum phase of the gluon field state to alignment in the presence of an
external source, which is reminiscent of the situation with the magnetiza-
tion of metals with the only difference that when the external action is
removed, the disoriented phase is restored. The correlation lengths and
times of vacuum fields are determined by the energy scale of confinement
and are insignificant for static sources, although they may lead to power
corrections in the characteristics of rapidly moving heavy quarks.
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Figure 4. Vacuum chromoelectric field which in the presence of charged
sources ‘is aligned’ along the line connecting the heavy quarks.

be averaged over the vacuum, we readily find

(G2) = 4CpE*(iin) .

oy

From Ref. [24] the following relation follows for the linear
term of the potential:

T o 1/2
k=—"=Cr <—S va> :

2/N, T
The quantity k is usually expressed via the parameter aj:

- 1
C 2naf

(2.9)

Following Buchmiiller and Tye we assume a3 = 1.04 GeV 2.
This value of the string tension related to the inclination
of the Regge trajectories may be compared with the
estimate following from expression (2.9). When
((as/m)Gp,) = (1.6 £0.1) x 1072 GeV* [7], we have

ap = 1.044+0.03 GeV 2,

which is in good agreement with the known inclination of the
Regge trajectories.

Potential form (2.8) corresponds to the limit when at small
virtualities (q> — 0) the coupling constant

K

2

ay(qs) — —,
q2

and

doy(q?)

g’ (2.10)

- 7OCV(q2) )

which gives the confinement asymptotics for the function "

2.1.4 Unique f-function and potential. Buchmiiller and Tye
proposed a constructive procedure for restoring the
p-function in the entire region of charge variation from
known limits in the case of asymptotic freedom in a given
order of perturbation theory in o and in the confinement
mode. Generalization of their method leads to the function
Bpert» found within the framework of asymptotic perturbation
theory in three loops, transforming into the f-function of
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effective charge:
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where the exponential factor in the second term only
determines the contribution in the order next in accuracy to
the order of the three-loop case for & — 0.

Function (2.11) exhibits a significant singularity as & — 0,
so that the expansion yields an asymptotic series in &. As
a4 — 0o, the function f tends toward the limit of the
confinement mode, as presented in Eqn (2.10). We recall
that one- and two-loop static potentials matched with the
linear confinement term result, when the mass spectra of
heavy quarkonia are fitted, in a contradiction with the QCD
coupling constant on the Z-boson mass scale. We shall show
that the static potential in the three-loop approximation is in
agreement with variations in the QCD coupling constant for
large virtualities.

In the perturbative limit, the usual solution for the
running coupling constant

2 1 [1 By 1 H2

)= e T g G " a2

2 2 2 V
-&-@%(lnzln“—z—lnln”—z—1+B2§0>}
By In” (u*/A4%) 4 A Bi

(2.12)

still holds valid. Making use of the asymptotic limit (2.12) one
can find the equation

,u2_ 1 Bi
lnp—iﬂ 7B) ﬁoln(ﬁ a(u ))

5(u?) 1 B 1
*L d“‘<W‘%+m>’

which is readily integrated, and obtain an implicit solution for
the dependence of charge on the scale. The implicit equation
can be inverted by the iteration method, so the approximate
solution has the form

(2.13)

1
Boln (14 n(u2)u2/4%)’

a(u%) = (2.14)

where 5(u?) is expressed in terms of the coefficients of the
perturbative f-function. The parameter /, in turn, is related to
the inclination of Regge trajectories and the scale A (constant
of integration) by the relation

’ ﬁl 2
In (4n>CrafA%) = In iy + 21 ( + >
n (4n°Crog A7) = In 2/30 YE 2/30
.BZﬁO ﬁl V / (215)
By L

which fully fixes the parameters in the fp-function and the
charge in terms of the scale A and inclination o.

2.1.5 Choice of scales. Like above, we assume the inclination
of Regge trajectories, which determines the linear part of the
potential, to be af =1.04 GeV~2. Making use of the
measured QCD coupling constant [23] and assuming

oaMS(m2) = 0.123

as the main parameter of the potential, we obtain the value
o y(mz) ~ 0.1306 which can be considered the normalization
condition for &(m2) = ay(m2)/(4n). Next we calculate the
parameter A for the effective charge, depending on the
number of active flavors [24].
Upon determining the momentum dependence of charge,
with the aid of a Fourier transformation we find

V() = kr — S u()

r

(2.16)

with the function

) = [0 5 (3 ) s ).

0 q

which is computed numerically at r > 0.01 fm. At small
distances, the behavior of the potential is purely perturba-
tive, so that at r < 0.01 fm in accordance with formula (2.6)
we have

V(r) = —Cr M .
r

Here, the running constant &y(1/r?) is determined by
equation (2.12) with the respective value of ) at ny = 5 and
is normalized by the matching condition with potential (2.16)
at r,=0.01 fm. As a result we obtain the value
ap(1/r}) = 022213, which yields the value A, =
617.42 MeV.

Thus, we have fully defined the model of the potential of
static heavy quarks in QCD with a three-loop running
constant. In constructing the unique f-function and the
potential, the confinement mode was introduced in a
phenomenological manner, and it is, naturally, not a result
of evolution which, nevertheless, at virtualities ¢ < 3 GeV
starts to be sensitive to the corrections introduced owing to
confinement. As a result we obtain a physically motivated and
phenomenologically admissible parametrization of the poten-
tial both at small and large distances.

Figure 5 shows the potential versus the distance between
the quarks. From the figure one can see that the computed
potential is close in shape to the potential of the Cornell
model determined phenomenologically by fitting the mass
spectra of heavy quarkonia. As a result, the conclusion can be
made that normalization of the QCD coupling constant at the
virtuality ¢> = m2 by three-loop evolution of the effective
charge, taking account of the linear quark confinement, yields
a static potential that is consistent with phenomenological
models, i.e. with calculations of mass spectra of heavy
quarkonia in the nonrelativistic approximation.

Matching the potential with the QCD parameters became
possible owing to two-loop consideration of the Coulomb
potential in the static limit, leading to significant corrections
to the p-function of the effective charge, so Af/f ~ 10%.
Such a correction is important for determination of the
critical charge determining the transition region between the
perturbation theory mode and the nonperturbative limit.
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Figure 5. Potential of static heavy quarks in QCD (solid line) compared to
the Cornell model (dashed line) with an accuracy up to an additive shift
along the energy scale.

Moreover, the two-loop matching condition and the three-
loop evolution of the running coupling constant normalized
in accordance with data on my at high energies fixes the range
of energy scales where the change of these modes occurs. This
scale is strongly correlated with data on the mass spectra of
heavy quarkonia. Indeed, it is connected to the splitting
between levels 1S and 2S. We stress that the two-loop
modification leads to correct normalization of the effective
Coulomb charge at interquark distances characteristic of the
average-sized heavy quarkonia, and it determines the evolu-
tion at small distances (r < 0.08 fm), which is essential for
calculating lepton constants related to the wave functions at
zero point.

A detailed analysis of the static quark potential in
computations of the mass spectra of heavy quarkonia and
the lepton constants of vector states, as well as a determina-
tion of heavy quark masses within the potential approach, are
presented in Ref. [24]. We note that the Buchmdiller—Tye
potential was obtained by fitting experimental mass spectra of
heavy quarkonia and is numerically very close to the static
potential obtained in the present review and made consistent
with the normalization of the QCD coupling constant at large
virtualities. Thus, the Buchmiiller—Tye potential retains its
phenomenological applicability for calculating the mass
levels of hadrons containing ¢ and b quarks with an error of
up to 40—70 MeV, which represents the typical uncertainty of
the potential approach.

2.1.6 Level system. Following Ref. [26] we use the Buchmdil-
ler—Tye potential as the model potential in which account is
taken of Coulomb-like corrections in the region of small
distances with a running QCD constant in the two-loop
approximation, while at large distances a linear increase of
the interaction energy occurs that leads to confinement. Both
modes therewith represent limiting cases for the effective
Gell-Mann—Low model S-function that is given explicitly.
In the antitriplet state it is necessary to take into account the
numerical factor 1/2 due to the color structure of the bound
quark —quark state. The corresponding factor in the interac-

tion of the diquark with the light constituent quark is unity.
We note that, as is shown in Ref. [27], the nonperturbative
constituent addition to the nonrelativistic quark mass is
precisely identical to the additive constant subtracted from
the Coulomb-like potential.

Thus, by fitting the model to the real spectrum of
charmonium and bottomonium one can reveal the heavy
quark masses:

m. = 1.486 GeV, m, = 4.88 GeV. (2.17)

The mass of the heavy quarkonium level (for example, of
charmonium) is calculated in accordance with the relation
M(Cc) = 2m, + E, where E is the energy of the static solution
to the Schrodinger equation with the model potential 7. The
mass of the meson with one heavy quark is given by the
expression M(Qq) = mg +my+ E, where already E =
(T)+ (V' —3V), and the additive supplement to the poten-
tial is introduced, because the constituent mass is determined
as a part of the interaction field energy: 8V = my,, where in
accordance with the fitting for the heavy meson masses
my = 0.385 GeV.

The calculated results for the energy eigenvalues in the
Schrédinger equation with the Buchmiiller—Tye potential
for various systems are presented in Table 1, while the
characteristics of the respective wave functions are in Table
2. Here, the binding energy and the wave function of the light
quark are with a good precision practically independent of the
heavy quark flavors, since the large diquark mass gives a
small contribution to the reduced mass of the system and
results in insignificant corrections to the Schrodinger
equation.

As a result, the energy levels of the light constituent
quark for states beneath the decay threshold of the doubly
heavy baryon into a heavy baryon and a heavy meson are as

Table 1. Spectra of bb, bc and cc diquark levels without spin splitting taken
into account.

Diquark M, GeV (r2)1/2, fm | Diquark M, GeV (rz)l/z, fm
level level

bb diquark
1S 9.74 0.33 2P 9.95 0.54
28 10.02 0.69 3P 10.15 0.86
3S 10.22 1.06 4p 10.31 1.14
48 10.37 1.26 5P 10.45 1.39
58 10.50 1.50 6P 10.58 1.61
3D 10.08 0.72 4D 10.25 1.01
5D 10.39 1.28 6D 10.53 1.51
4F 10.19 0.87 SF 10.34 1.15
6F 10.47 1.40 5G 10.28 1.01
6G 10.42 1.28 6H 10.37 1.15

be diquark
N 6.48 0.48 3P 6.93 1.16
28 6.79 0.95 4P 7.13 1.51
3S 7.01 1.33 3D 6.85 0.96
2P 6.69 0.74 4D 7.05 1.35
4F 6.97 1.16 SF 7.16 1.52
5G 7.09 1.34 6H 7.19 1.50

cc diquark
1S 3.16 0.58 3P 3.66 1.36
28 3.50 1.12 4p 3.90 1.86
3S 3.76 1.58 3D 3.56 1.13
2P 3.39 0.88 4D 3.80 1.59
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Table 2. Characteristics of radial wave functions of bb, bc and cc diquarks.

nL R(0), GeV3/? nL R'(0), GeV>/?
bb diquark

LS 1.346 2P 0.479

28 1.027 3P 0.539

3S 0.782 4p 0.585

48 0.681 5P 0.343
be diquark

1S 0.726 2P 0.202

28 0.601 3P 0.240
cc diquark

N 0.530 2P 0.128

28 0.452 3P 0.158

follows

E(1s) = 0.38 GeV, E(25) = 1.09 GeV, E(2p) = 0.83 GeV,

where the energy of a level was determined as the sum of the
constituent mass and the eigenenergy of the stationary
Schrédinger equation. In the HQET theory one introduces
A = E(1s). Hence it is possible to conclude that our estimate
is in good agreement with the calculations done within other
approaches. This once again testifies to the reliability of such
a phenomenological prediction. For the respective radial
wave functions and their derivatives at zero point we find

Ri5(0) = 0.527 GeV?3/2

Ry5(0) = 0.278 GeV /2,

R},(0) = 0.127 GeV /2.

The analogous characteristics for the bound state of the
system involving the ¢ quark and bb diquark have the values
E(ls) =142 GeV, E(2s) =1.99 GeV, E(2p)=1.84 GeV
with the appropriate wave functions

Ri5(0) = 1.41 GeV?*/?,

Ry,(0) = 1.07 GeV?3/2,

R5,(0) = 0.511 GeV /2.

For the constituent strange quark binding energy we add the
mass from the current, ms ~ 100—150 MeV.

2.1.7 Spin-dependent corrections. In accordance with works
[28] we introduce two types of the spin-dependent corrections
that provide for the splitting of nL-levels in the diquark and in
the system involving the light constituent quark and the
diquark (n = n, + L + 1 is the principal quantum number, 7,
is the radial excitation number, and L is the angular
momentum).
For a heavy diquark with identical quarks one finds

: | LgiSaiq ( 1dV(r) 8 1
diq _ 1 bdigPdiq (1 ° L
Vi (1) = 2 2mé ( rodr )

Os
3 73

2 1 1 4 1

+ 3 O Wl_é 3 LdiqSdiq +§ O % S01S0> [4TE(3(1‘)]
1 1 1 1 5

— =ty — —5—— — |06(LdiqSdi
3% I’Vlé 4L§iq -3 [ (LdiqSdiq)

+ 3(LdiqSdiq) — 212 S? ] ,

'diq™diq (2 18)

where Lgiq and Sgiq are the angular momentum in the diquark
system and the total spin of the quarks composing the
diquark, respectively.

Taking into account the interaction with the light
constituent quark yields (S = Sgiq + Si)

1 /LSaq 2LS)\/ 1dV() 8 1
1 _ ! diq N(_2 2y =
V‘gd(r)4(2mé + 2m12)( rdr Jr3 % 1'3)
1 1

— (L'Sdgiq +2L'S
S momy r3( diq 2

+loc
3

4 1
+ - g — (Sdiq + Ldiq) S [411’, 5(]’)}

§ s 3WZQWZ1

1 1 1 1

% 23
3 " mom 4LF -3 1

— 6(LSaig)” — 3(LSaiq) + 2185, ] -

[6(LS)* +3(LS) — 2L7S?

(2.19)

The first term in the last expression corresponds to the
relativistic correction to the effective scalar exchange, while
the subsequent terms are due to the corrections to the effective
one-gluon exchange with the constant os.

We define the effective parameter o in the following way.
The splitting in the S-wave heavy quarkonium Q;Q; is given
by the expression

C
AM[nS] =g os o |Rus(0)*. (2.20)

Here R,s(0) is the radial wave function of quarkonium at zero
point. From experimental data in the cc system one obtains

AM[1S] = 117 £2 MeV (2.21)

and using R;5(0) calculated in the model we find o5 ().

Further, we take into consideration the dependence of the
parameter o5 on the reduced mass .4 of the system within the
framework of the one-loop approximation for the running
QCD constant, when

2 47
w(p7) = Bo IH(PZ/A%)CD) 7

(2.22)
with By =11 —2n¢/3 and n; =3 for p?> <m?2. From the
phenomenology of potential models it is known that the
mean kinetic energy of the motion of bound-state quarks is
practically independent of the quark flavors and takes the
values

(Tuiq) = 0.2 GeV, (2.23)

(T)) ~ 0.4 GeV (2.24)

for the antitriplet and singlet coupling, respectively. Sub-
stituting the definition of kinetic energy

(r?)
T = 2.25
< > 2:ured ( )
into formula (2.22) we obtain
47
as(p?) , (2.26)

N ﬁO In <2<T>ﬂred/A2QCD)
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where according to Eqn (2.21) the numerical estimate gives
Agep =~ 113 MeV.

For identical quarks in the diquark we apply the
computational scheme (well-known from heavy quarko-
nium) for finding corrections due to LS-coupling, while for
interaction with the light quark we apply the jj-coupling
scheme. In this case LS is diagonal for given J; =L+ S;,
J=J+J, where J is the total baryon spin, and
J= Sdiq + Ldig 18 the total momentum of the diquark.

Then, for estimating various contributions and mixing of
states one can avail oneself of the basis transformations
(S =S1+J, Jgiq = Sdaiq + L):

W5y =S (=1 RS D@5+ 1)
S

J S S\,
X{L 7 Jl}|J,S>, (2.27)
s = D= Qg + D2+ 1)
Jiiq
J L Jag ),y .
SEEA T (228)

Thus, we have examined in detail the procedure for calculat-
ing the mass spectra of doubly heavy baryons.

2.2 Numerical results

In this section the calculated results are presented for mass
spectra with due account of level splitting dependent on the
quark spin. As we explained above, doubly heavy baryons
with identical heavy quarks permit a quite reliable interpreta-
tion in terms of excited-state quantum numbers of the
diquark (total spin and angular momentum). For a baryon
with a bc diquark, a calculation was performed of the spin
splitting of the ground 1S state, since for higher excitations of
this quark the allowable emission of a soft gluon violates the
simple picture of level classification. It is clear that the
quark —diquark model of bound states of doubly heavy
baryons leads to the most reliable results in a system with a
larger quark mass, i.e. in the Eyp, system.

When classifying the quantum numbers of energy levels
we make use of the notation ngiqLgiq7l, i.e. we indicate the
values of the principal quantum number in the diquark,
angular momentum in the diquark, the principal quantum
number of the excited light quark and its angular momentum.
Level splitting of the Ey}, baryon was considered in detail in
papers [26]. The states with total spin J = 3/2 (or 1/2) may
have different values of J; and, thus, acquire nonzero mixing
in calculations by perturbation theory based on states with a
certain total momentum of the light constituent quark. For
J =3/2, the mixing matrix can be considered with high
precision to be diagonal, and for J = 1/2 the mixing of states
with differing total momenta of the light quark is strong.

The comparative analysis for levels 152p and 2S52p in the
Hpp system, carried out by Gershtein [26], revealed the
difference in the wave functions due to the disparity between
the masses of the diquark subsystem being actually insignif-
icant. Splitting AV} of the diquark D- and G-levels is
suppressed [A“4) < 11 MeV], so that within the accuracy of
the method employed such corrections for excitations of a
diquark with dimensions inferior to the distance from the
light quark (i.e. with a small principal quantum number) are
negligible (M ~ 30—-40 MeV).

M, GeV
3S2p
11.0 6Pls Threshold
1825 spls___ W e
ASls — E p— 5Dls 2P2p
— S
—_— - 4D1s =
3Sls 1S2p gﬁ : = 12,
105 L —  3Pls___3p =31/Z', 3D1s 2y
’ 281s 3+ iz 1 = = ;23,1
—1/2* 2Pls 2- 35+
/ __%27 5/2
1S1s 32+
- 1/2+
10.0

Figure 6. Mass spectrum for Z, and £, baryons with due account of the
splitting of low-lying excitations, dependent upon the quark spins.

The hyperfine spin—spin splitting in the quark —diquark
system is given by

2

I

2 S 3 !
1
B =5 |I+1) =TT+ 1) = 5 o6 ptea ) e | R1(0)

my,
(2.29)

where R;(0) is the radial wave function of the light constituent
quark at zero point, and the diquark level shift equals

. 1 1 )
At = 5 % (treaTaia) —3 [Raia (0] (2.30)

b

The mass spectrum of baryons Z, and ZJ is shown in
Fig. 6, where we have restricted ourselves to presenting the S-,
P- and D-wave levels, while a table containing the numerical
values of the Ep,-baryon masses is presented in Ref. [26].
From the figure one can see that the baryon masses
1Sts (J? =3/2%, 1/27), 2Pls (JP=3/27,1/27) and
3Dls (JP=7/2%,...,1/2%) can be considered the most
reliable predictions. Notice that the 2P1s level is metastable,
since transition to the ground state requires the angular
momentum and total spin of the heavy quarks in the diquark
to change simultaneously.

The transition between ortho- and parahydrogen states in
the H, molecule that takes place in the inhomogeneous
external field created by the magnetic moments of other
molecules can be considered an analog of such a process.
For 2P1s — 1S1s, the part of the external field is assumed by
the inhomogeneous chromomagnetic field of the light quark.
The corresponding perturbation has the form

1
SV ~ m_Q [SlHl +S;H, — (S1 +Sy) <H>]

1 1 I'Kdiq
_ Vi (S — SO H ~ — S —Sy))J
3 Q( Faig)(Si 2) 0 qus( 1 2)if(n),

where f(r) is a dimensionless nonperturbative function
depending on the coordinates of the light quark with respect
to the diquark. Obviously, a perturbation 8V will alter the
angular momentum of the light quark and lead to mixing of
states with identical J * values. If the splitting is not small (for
example, 2P1s—1S52p, where AE ~ Agcp), then mixing is
suppressed:
4 1 I'diq 1

o fag 1 <1,
AE  momy r} AE <
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Since the 1S2p admixture in the 2Pls state is small, the
2P1s levels are quasi-stationary, i.e. their hadron transitions
(with the emission of m-mesons) to the ground state are
suppressed, by the way, additionally owing to the small
phase-space volume. Therefore, one should expect anoma-
lously narrow resonances to arise in the spectra of Eppm pairs
owing to the decays of quasi-stationary states with
J? =3/27, 1/27. The experimental detection of such energy
levels would directly signify the existence of diquark excita-
tions and would provide information on the character of the
f(r1) dependence, i.e. on the origin of the inhomogeneous
chromomagnetic field in the nonperturbative region.

Evidently, the 3Dls (J”=7/2%, 5/2%) states that
undergo transition in the multipole QCD expansion to the
ground state owing to quadrupole emission of a gluon
(E2 transition involving hadronization gg — ¢'rn) are also
quasi-stationary. As to the higher excitations, the 3 P1s states,
for example, are close to the 152p (J¥ = 3/27, 1/27) levels,
so even the contributions (suppressed by the inverse heavy
quark mass and the small diquark size) of the operators
altering the diquark angular momentum and spin can lead to
significant mixing with an amplitude 8V, /AE,, ~ 1. How-
ever, in our opinion it will only insignificantly shift the masses
of the states. It is more important that a large 1.52p admixture
in the 3Pls state renders the latter unstable with respect to
transitions to the ground 1S1s state with emission of a gluon
(E1 transition) which leads to decays, for instance, with the
emission of m-mesons® in the physical hadron spectrum. The
level 182p (J¥ = 5/27) possesses definite diquark and light
quark quantum numbers, since there are no nearby levels with
the same J* values, but its transition width to the ground state
with the emission of a m-meson is not suppressed in any
manner and, most probably, is large (I" = 100 MeV).

We also note that radiative processes of hadron transi-
tions lead to various wave states depending on the P-parity of
the baryons and on their spin:

3/27 —3/2*F
3/27 —1/2*F
1/27 —3/2F
1/27 —1/2F

7 in the S-wave),
n in the D-wave),

7 in the D-wave),

o~ o~ o~ —

7 in the S-wave).

The D-wave transitions in the process are suppressed by the
low baryon recoil momenta as compared to their masses. The
width of the lowest-lying J© = 3/27 state is fully determined
by the radiative electromagnetic M1 transition to the ground
state J© = 1/2%,

The calculation procedure described above yields the
results presented in Table 3 for doubly charmed baryons.

As has already been noted, a heavy quark composed of
quarks of different flavors is, most likely, unstable with
respect to the emission of soft gluons, so that in the Fock
state of a doubly heavy baryon there exists a significant
nonperturbative admixture of configurations including
gluons and a diquark with various values of its spin Sgiq and
angular momentum Lygiq:

|Boeq) = Os|be[3c, Saigs Laiql, 4)
+ Hl’bc[§C7Sdiq :t leding? Q>
+ H2|bc[§0a Sdiqa Ldiq + ]]7g7 61> +

¢ We recall that Eyg baryons are isodoublets.

Table 3. Mass spectra for 25, 5, and QY baryons.

nLmlh (J¥) M, GeV nLml (J?) M, GeV
2. and £ baryons
IS1s (1/2%)  3.478 3PIs (1/27) 3972
1S1s (3/2F) 3.6l 3DIs (3/2'1)  4.007
2PLs (1/27) 3702 1520 (3/2'7)  4.034
3DIs (5/27) 3781 1520 (3/27)  4.039
2S1s (1/27) 3812 152p (5/27)  4.047
3DIs (3/27)  3.83 3DIs (5/2'%)  4.05
2PIs (3/27)  3.834 152p (1/2'7)  4.052
3DIs (1/2%) 3875 3Sls (1/2%) 4072
152 (1/27)  3.927 3DIs (7/2%)  4.089
2S1s (3/2)  3.944 3PLs (3/2)°  4.104
Q) baryon
1SLs (1/25) 1112 3DIs (3/2')  11.52
1S1s (3/2%) 1118 3DIs (5/2'7)  11.54
2PLs (1/27) 1133 152p (1/27)  11.55
2PLs (3/27) 1139 3DIs (7/2) 1156
2815 (1/27)  11.40 1520 (3/2'7)  11.58
3DIs (5/27) 1142 1520 (3/27)  11.58
3DIs (3/2)  11.44 152p (1/27)  11.59
3DIs (1/2%) 1146 152p (5/27)  11.59
251s (3/2) 1146 3PIs(3/27) 1159
3PIs (1/27) 1152 3SIs (1/24) 1162

and the amplitudes H; and H, are not small in reference to
Og. In heavy quarkonium, the contributions from similar
operators of states (octet-like in the color) are suppressed by
the probability of nonrelativistic quarks emitting in the small
volume determined by the size of the singlet quark—
antiquark system. But here the soft gluon is only restricted
by the ordinary confinement scale and no suppression exists.

In such a situation we think it is not quite justified to
perform calculations of excited Ey.-baryon masses by the
above-described procedure. Therefore, we only present the
result for the ground state J* = 1/2%:

M[Ell)c} = 685 GeVa M[Ebc] = 682 GeV7

where in the vector diquark the splitting dependent on spin is,
in the case of interaction with the light constituent quark,
determined by the standard contact interaction between the
magnetic moments of two point systems. The diagram of
baryon energy levels without the spin-dependent perturba-
tion suppressed by the mass of the heavy quark is presented in
papers [26].

2.2.1 Doubly heavy baryons Qp¢: with strangeness. In the
leading approximation, the wave functions and excitation
energies of a strange quark in the diquark field repeat with a
good precision the characteristics of similar baryons with u
and d quarks. Therefore, with a precision up to an additive
upward mass shift equal to the mass due to the strange quark
current, namely

ms ~ M[Ds] — M[D] ~ M[B] — M[B] ~ 0.1 GeV,

the set of Qpg-baryon levels without account of the splitting
dependent on the quark spins coincides with the set of levels
of the Egp' baryons.

Further, the spin—spin splitting of the low-lying states of
Qoo baryons for the levels ngiqSnis, 2P1s and 3D1s is smaller
by 20—30% than in Epgp- (the m, q/m;s factor). Concerning
the 152p level, one can repeat the calculation procedure
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described above. Thus, in the Qpp, baryon the mixing matrix of
states with various values of the total momentum of the light
constituent quark is practically diagonal. This means that the
perturbation term

lZLSl _ldV(r) 8 1
4 2m12

S~
rodr 373

dominates, so the splitting of the 152p level is determined by
the factor m? ;/m2, i.e. is 40% smaller than in Sy, meaning
very small. In the Q. baryon, the m/m, factor is not small, so
that for the 152p level the mixing matrix of states with various
values of the total light constituent quark momentum is non-
diagonal, and the order of arrangement of the 1.52p spin states
in Q.. may differ somewhat from that in E.

It is interesting to note the following peculiarity of Qp¢-.
The lowest-lying S- and P-excitations of the diquark, even
with due account of the mixing of levels with various spins
and angular momenta of the subsystems, are quasi-stationary
with respect to decays via strong interaction, since the gluon
emission is accompanied by its hadronization into K-mesons
(transitions Qpo' — Epg + K), while solitary emission of
n-mesons is forbidden by isospin and strangeness conserva-
tion laws. The corresponding hadron transitions with kaons
do not occur owing to the insufficient mass splitting between
the Qoo+ and ZEgg- levels, and decays with the emission of
pion pairs in the isosinglet state are either suppressed by the
small phase-space volume or forbidden. Thus, radiative
electromagnetic transitions to the ground state are the
dominant decay modes of the low-lying Qg excitations.

2.2.2 Qe baryons. Within the framework of the quark —
diquark picture it is possible to construct a model of baryons
with three heavy quarks: bbc. However, as revealed by
calculations, the diquark dimensions are comparable to the
rms distance to the charmed quark, so that the model
assumption concerning the compact heavy diquark may, in
this case, turn out to be insufficiently accurate for computing
mass levels. As to the spin-dependent splitting, it is negligible
for interactions inside the quark, as pointed out above. The
spin—spin splitting of the vector diquark with a charmed
quark is A(1ls) = 33 MeV, A(2s) = 18 MeV, while the level
shifts for the 152p splitting are small, so only for one of the
JP =1/2 levels must one take into account the correction
—33 MeV. The splitting in the 3D1s state is determined by the
spin—spin interaction. The characteristics of charmed quark
excitations in the model with the Buchmiiller— Tye potential
were presented above. As a result we obtain the energy level
diagram of the Q. baryon, which is shown in Table 3.
Further, it must be noted that in a number of cases, owing
to the small splitting between the levels, excitations of the
Q,?bc—baryon ground state may mix quite strongly with large
amplitudes, but with small mass shifts: 3Pls—1S2p
(JP=1/27,3/27),251s-3D1ls (JF = 1/2%, 3/2%). We con-
sider quite reliable the predictions for the states 1S1s (J* =
1/2+,3/27), 182p (JP =5/27), and 3Dls (JP =5/2%,
7/27%). Tt is for these excitations that one can perform quite
precise calculations of the radiation widths of electromagnetic
transitions to the ground state in the multipole expansion.
The transition widths with the participation of mixed
states are to a significant degree determined by the ampli-
tudes of admixtures, which may exhibit essential model
dependence. In this connection, experimental investigation
of electromagnetic transitions in the Q) .-baryon family

could provide valuable information on the mixing mechan-
ism of various levels in baryon systems. Notice that electro-
magnetic transitions together with the emission of pion pairs
(if the latter processes are not forbidden by the phase space)
make up the total widths of the QF. excited levels.
Characteristic total widths may, most likely, be considered
to reside at the level of I' ~ 10—100 keV. Thus, the QF_
system can be defined with a large number of narrow quasi-
stationary states.

2.3 Discussion

We have performed a detailed calculation of the spectroscopic
characteristics of baryons with two heavy quarks in the model
of quark —diquark factorization of wave functions within the
nonrelativistic model of constituent quarks with the Buch-
miiller — Tye potential and outlined the field of application of
such approximations. We have taken into account relativistic
quark spin-dependent corrections to the potential in the
diquark and light quark—diquark subsystems: below the
threshold of hadron decay into a heavy baryon and a heavy
meson with one heavy quark one may observe a set of excited
bound states that are quasi-stationary with respect to hadron
transitions to the ground state. We have dealt in detail with
the physical principles for quasi-stationarity occurring for
baryons with two identical quarks, since together with the
Pauli exclusion principle the contributions from operators
responsible for hadron decays and level mixing are sup-
pressed by the inverse heavy quark mass and by the small
size of the diquark. This suppression is due to the necessity for
the spin and angular momentum of the compact diquark to
change simultaneously. In baryon systems with two heavy
quarks and a strange quark, the quasi-stationary character of
lower diquark excitations is provided for by the absence of
transitions both with emission of a single kaon owing to the
small level splitting and with emission of a single pion owing
to isospin and strangeness conservation. The characteristics
of the wave functions can be used in calculating doubly heavy
baryon production cross sections in the quark—diquark
approximation.

Notice that quark —diquark factorization for calculating
the masses of the ground-state levels of a baryon system with
two heavy quarks has also been considered in Ref. [29] within
the potential approach [30]. There exists a purely numerical
difference in the choice of heavy quark masses that results in
the mass of the doubly heavy diquark, obtained in Ref. [29],
being approximately 100 MeV higher than in the calculations
presented above. This difference is decisive in the divergence
of mass estimates for the ground states in the present review
and in Ref. [29]. In our opinion this is due to the employment
of the Cornell potential with a constant value for the effective
Coulomb exchange constant contrary to our study with a
running constant.

Moreover, in the potential approach the masses of heavy
quarks depend on a possible additive shift in the potential,
which in phenomenological models is chosen, for example, by
comparing the lepton constants of quarkonia in the model
with known experimental values. In the QCD-motivated
potential no such arbitrariness in the additive shift in the
potential exists, so that the estimates of heavy quark masses
contain fewer uncertainties.

It should also be noted that in the Cornell model the
lepton constants were calculated by taking into account the
one-loop correction due to hard gluons that is quite
significant, especially for charmed quarks, and therefore
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two-loop corrections turn out to be important in dealing with
lepton constants in the potential approach [24]. In Ref. [29],
the constituent mass of the light quark and the potential shift
were considered uncorrelated, while we assumed the consti-
tuent mass to be part of the nonperturbative energy in the
potential. This may lead to an additional discrepancy of the
order of 50 MeV in the estimates of baryon masses.

With due account of the above comments concerning the
methodical differences one can assert that the mass estimates
for the ground states of baryons with two heavy quarks,
presented in Ref. [29] and in our approach, are in fairly good
agreement (Table 4).

Table 4. Masses (in GeV) of ground states of baryons with two heavy
quarks in various approaches.

Baryon B 29 21 B3 B4 35]
Zee 348 374 366 366 361 365 371
2 361 385 381 374 368 373 3.79
Qe 359 376 376 374 371 375 3.89
Q. 369 390 389 382 376  3.83 3.91
S 1009 1030 1023 1034 — — 10.43
g5 1003 1034 1028 1037 — — 10.48
Qw1018 1034 1032 1037 — — 10.59
Q, 1020 1038 1036 1040 — — 10.62
Zep 682 701 695 704 — — 7.08
I 685 707 700 699 — — 7.10
=5 690 7.0 702 706 — — 7.13
Qb 691 705 705 709 — — 7.23
Qly 693 711 709 706 — — 7.24
Q 699 713 711 712 — — 7.27

The asterisk indicates results obtained by the authors of the present
review. The uncertainty in the predictions, when the parameters of
models are varied, amounts to 30— 50 MeV; the uncertainty due to the
methodical aspect is discussed in the text.

In Ref. [31], by complete analogy with Ref. [29], an
analysis of relativistic spin-dependent corrections has been
made within the framework of the quasi-potential approach,
in which the exaggerated, in our opinion, estimate of the
heavy diquark mass from Ref. [29] was used. Regretfully, the
description of the calculations contains a clear error: the
parameter setting the relative contribution of the scalar and
vector potentials, and the anomalous chromomagnetic
moment of the heavy quark were denoted by the same
symbol, which leads to confusion and to numerical errors,
whereas in paper [29] these characteristics are shown to
possess different values. This introduces additional uncer-
tainty in the estimates [31] at the level of 100 MeV, so that the
results by Tong et al. [31] can be considered not to contradict
our study (see Table 4).

Estimates based on the pair interaction hypothesis were
given in Ref. [32]. In the light of the discussion at the
beginning of this section it is not surprising that a difference
0f 200—-300 MeV may be mainly due to the different character
of interquark forces in a doubly heavy baryon, although the
uncertainty in the heavy quark masses is also important. In
Ref. [33], simple arguments were applied basing on HQET
with a heavy diquark: the estimate depends on the mass of the
diquark (composed of two heavy quarks) assumed in the
model. Here, if one neglects the binding energy in the diquark,
which is clearly related to the heavy quark masses, the mass
estimates for the ground states, presented in Table 4, are
obtained.

Finally, in Ref. [35] the analysis made in Ref. [36] is
modified on the basis of interpolation formulae for the mass

of a bound state with due account of the dependence of spin
forces on the wave functions and effective coupling constant,
which are varied in accordance with the quark composition of
the hadron. Here, the fitting shape contains a parameter of
the additive energy shift, which changes significantly when
the transition takes place from mesons to baryons:
0, ~ 80 MeV — g =~ 210 MeV. The shift in energy provides
for excellent agreement of the fitting with the heavy meson
and baryon masses obtained experimentally. However, if one
considers that in the character of its strong interactions a
doubly heavy baryon is rather similar to a meson with a local
diquark source, then a shift in the binding energy should have
been used in the heavy mesons and not in the heavy baryons,
where the existence of a system of two light quarks obviously
leads to a significant distinction in the calculated masses of
bound states, namely, to a shift in the binding energy differing
from the meson case. Such a substitution of the fitting
parameters would lead to a much better agreement between
the results by Kaur and Khanna [35] and our findings (see
Table 4).

Summing up, it can be said that the uncertainty in the
heavy quark masses is decisive in calculations of the masses of
doubly heavy baryons within the framework of the potential
approach. The analysis of a potential with a running coupling
constant at small distances and a linear nonperturbative term
confining quarks at large distances, made by the authors in
the QCD-motivated model and adjusted on systems with
heavy quarks, yields the most reliable predictions.

Significant interest is presented by the new field of studies
— radiative (electromagnetic, as well as hadronic) transitions
between quasi-stationary states in the families of baryons
with two heavy quarks. The first step in the investigation of
this problem has been made by Dai et al. in paper [37], where
preliminary qualitative results were obtained on the electro-
magnetic transitions between levels of the =, baryon.

3. Nonrelativistic QCD sum rules:
two-point correlators

Within the framework of potential models, a description was
presented in Section 2 of the families of baryons with two
heavy quarks, containing a set of narrow excited states (in
addition to the ground states): their mass spectrum is similar
to the set of levels of heavy quarkonium. With the aid of the
method of QCD sum rules [7] for two-point correlators of
baryon currents, calculations were performed in Ref. [38] of
the masses and structure constants of baryons with two heavy
quarks. The analysis presented in Ref. [38], however, exhibits
a number of faults related to the instability of sum rules in the
region of parameters determining baryon currents, which
leads to quite large uncertainties in the calculated results.

In this section we examine the NRQCD sum rules for two-
point current correlators corresponding to baryons with two
heavy quarks. The major physical argument for such a study
consists in the nonrelativistic motion of heavy quarks in a
small-sized diquark interacting with the light quark. This
leads to quite definite expressions for the structure of baryon
currents written in terms of nonrelativistic heavy quarks. In
the leading order in the inverse heavy quark mass and relative
velocity of the heavy quarks inside the diquark it is necessary
within the NRQCD sum rule to take into account hard gluon
corrections for deriving the relation between nonrelativistic
correlators of heavy quarks and the correlators in complete
QCD. The corresponding anomalous dimensionalities of
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baryon currents in the two-loop approximation were calcu-
lated in Ref. [39].

The structure of NRQCD currents correspond to a fixed
choice of parameters in the expressions of complete QCD, the
values of which fall in the instability region revealed in the
analysis made previously [38]. We have found a simple
physical reason for the loss of stability in this case: depending
on the parameters of the sum rules (the Borel variable or the
number of the spectral density moment) the behavior of the
quantities is determined by the presence of a doubly heavy
diquark inside the baryon and, as a consequence, by the
difference in masses between the baryon and the diquark. The
mass difference plays a dominant part, if one does not take
into consideration the corrections related to the nonpertur-
bative interaction of the doubly heavy diquark and the light
quark inside the baryon.

The involvement in the study of such an interaction in
the NRQCD sum rules is related to nonperturbative
condensates due to operators of higher dimensions. Stabi-
lity of the sum rules can be achieved by taking into account
the product of quark and gluon condensates in addition to
the quark, gluon and mixed condensates. This product was
dropped from the analysis within the framework of
complete QCD. Moreover, it is necessary to accurately
take into consideration Coulomb og/v-corrections inside
the heavy diquark, which enhance the relative contribution
from the perturbative part with respect to the condensates
in the correlators calculated. Then we perform comparative
analysis of the sum rules for baryons with a strange and a
light massless quark.

Currents are determined and spectral densities within
NRQCD sum rules are computed with due account of
various operators in Section 3.1. Section 3.2 deals with
numerical estimates. The masses of the ground states are
obtained, the values of which are close to those calculated in
potential models. The results obtained are briefly summed
up in Section 3.3.

3.1 Sum rules for baryons with two heavy quarks
3.1.1 Baryon currents. Currents of 22, Z5;, and E/ baryons
with two heavy quarks, where the symbol ‘¢’ denotes the
baryon electric charge dependent on the light quark flavor,
correspond to the quantum numbers of spin and parity
J§q =17 and J§, = 0" for the heavy diquark system with a
flavor matrix of symmetric and antisymmetric structure,
respectively. Adding a light quark to the system of heavy
quarks yields JZ = 1/2% for the /S baryons as well as a pair
of degenerate states J¥ = 1/2" and J* = 3/2" for the B,
Epes Sy and B2°, EX°, Bp baryons.

Usually, the current structure of baryons with two heavy
quarks is written in the form

J[E00] = [0TCTTQ/II g% e . (3.1)
Here, T denotes transposition, C is the charge conjugatlon
matrix with the properties € y T C'=—y,and (YIC~" =5,
7 is a matrix in flavor space, and i, J, k are color indices. The
effective static field of the heavy quark is denoted by the
symbol Q. In the leading order in both the relative velocity of
heavy quarks and in their inverse masses, the field Q contains
only a ‘large’ component of the Dirac spinor in the hadron
rest frame.

Unlike the case of baryons with a heavy quark [40], there
exists a single independent current component J for the

ground state of each baryon current:
J[:,QOQ’] = [Q iTCTV Qﬂ]quijk>
[':'QQ] = [ ITCT/mQj] /mysquijka

T'Epo) = [0 Cry" 07 | eijn + %/ (07 Cy™07 | d e
where J"[E] satisfies the equation for a particle of spin 3/2:
7l "[Ejp) = 0. The flavor matrix ¢ is antisymmetric for g,
and symmetric for 2, /. The currents in equations (3.2)
are written out in the hadron rest frame. The respective
expressions in an arbitrary reference frame moving with a
4-velocity v* can be obtained by the substitution
p™ — plt = p# — o Similar expressions can be written for
doubly heavy baryons with a strange quark.

For comparison with the analysis in complete QCD we
present the expression for the current J[E;], obtained in
Ref. [38]:

(3.2)

o

JE) = {rl [T Cyse/]b® + ra[u'T Cel] ysh*
+ r3[ulTCy5yuC' b4 bk} Sijkv

so that the current structure in NRQCD can be obtained by
the following choice of parameters:

1‘121’2:17 }’320

and antisymmetric permutation of ¢ and b flavors. As has
already been pointed out, the authors of Ref. [38] noted the
‘bad’ convergence of the operator expansion in the region of
NRQCD parameters. This instability leads to large uncer-
tainties in the results. To find the reason and to remove this
defect, we further perform a detailed analysis of the NRQCD
sum rules.

3.1.2 Description of the method. Let us define the procedure
for calculating two-point correlators in the NRQCD
approximation and their relation with the physical char-
acteristics of baryons involving two heavy quarks. We shall
start with the T-ordered correlator of two baryon currents’
of spin 1/2:

o(w) = in4x (0|T{J(x) J(0) }|0) exp (ipx)

=yF(w)+ F(w). (33)

Here w is determined by the relationships

= (M+w)?, M =mg +mg: + mg,

where mg ¢ are the heavy quark masses, and m; is the mass of
the strange quark. It is obvious that the correlators for the
currents of baryons containing a light quark, instead of a
strange quark, can be obtained if one sets m; — my, ¢ ~ 0 in
the expressions presented below. The spectral densities in the
case of spin-3/2 baryons assume the form

II,(w) = 1Jd4x <0|T{J ‘0> exp (ipx)

=—guw [¢F1 (w) + Fz(w)] + (3.4)

7 Below, to reduce the notation we do not explicitly indicate the quantum
numbers of currents corresponding to the baryon composition.
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Further we shall not examine the contribution from other
Lorentzian structures for baryons of spin 3/2, since an
analysis of the scalar correlation functions F , leads (under
the conditions formulated below) to consistent results for the
masses of bound states and for the coupling constants of
currents with hadrons. Calculations for other scalar two-
point correlation functions in the case of Lorentzian
structures other than those presented above can, in our
opinion, only lead to a repetition of the quite reliable results
already obtained by us, although, truly, this could only
enhance the reliability of estimates for the masses and
constants.

The scalar correlators F can be calculated in the deep-
Euclidean region by applying (within the framework of
NRQCD) an operator expansion for the chronological
product of baryon currents in equations (3.3) and (3.4). For
example, one finds

Fio(w) =Y i (w) 0y, (3.5)
d

where O, stands for the local operator of dimension d:

0o=1, 03=1(qq), 04=<%Gﬂ>, .
and the functions C,(w) are the Wilson expansion coefficients
of the corresponding operators.

In this review nonperturbative contributions are taken
into account that are related to the quark, gluon and mixed
condensates. The operator expansion for the correlator of
two quark fields [41] was used in calculating the contribution
from the quark condensate:

(0| Tg(x) g/ (0)|0)

1 mix? x4 /o
=——5%5,4gg) |1 + =2 bl e
12 0" 0ulaa) | 1+ ==+ 5gg <n e

(3.6)

where the mixed condensate is parametrized by the variable
m¢, the numerical value of which is approximately 0.8 GeV 2.

With due account of the nonzero strange quark mass it is
possible to obtain the following expression with a precision
up to terms of the fourth order in x within the framework of
the operator expansion for the quark condensate [42]:

(01157 5/0)]0) = 15 678,59 {1+ — 2m)
+ % [n2<% G2> — ; mf(mg — mf)}}
+imgd Pyl (ss) {% + ;T; <% mg — mf)]
= —5(35)(Podij + P1xs)7 + Padjjx?
+ Paxyyl’ + Padipxt) . (3.7)

We note that for mg # 0 expansion (3.7) gives a contribution
to both correlators unlike the sum rules for doubly heavy
baryons Egos with a light quark [43], in which in the limit
ms = 0 and restricting the contribution from the local quark
condensate one can obtain factorization of the diquark
correlator into F, and of the total baryon correlator into Fj.
Such factorization led methodically to instability of estimates
in the sum rules.

For calculating the Wilson coefficients of single and
quark —gluon operators we apply the dispersion relations
in w:

Ca(w) = lr@ do P4 (3.8)

T Jo w—w’

where p, stands for the imaginary part of the respective
Wilson coefficient in the NRQCD physical region. Thus, the
problem of calculating the Wilson coefficients of the
operators we are dealing with reduces to the problem of
computing the respective spectral densities.

For relating the NRQCD correlators and characteristics
of the hadrons we apply the dispersion representation of the
two-point function for the physical spectral density in the
form of a sum of the resonance part and the continuous
spectrum. The baryon structure constants are determined by
the expressions

(0[J(x)[E(p)) = iZ= u(v, M) exp (ipx)
<0’J’”(x)‘E(p,)u)> =iZzu" (v, M) exp (ipx),

while the spinor field with the 4-velocity v and mass M satisfy
the equation

Yu(v, M) = u(v, M),

and u" (v, M) denotes the transverse spinor, so that

(4" — 0" u" (0, M) = 0.

We assume the density of the continuous spectrum
starting from the threshold weon; to coincide with the
perturbative density calculated within the framework of
NRQCD. Equating the expressions for correlators calcu-
lated within NRQCD and with the aid of physical spectral
densities we cancel out the contributions due to integration
from weon; to infinity in both parts of the equation. Actually,
such a model of the continuum cannot be accurate, and the
physical density of the continuum is not described by the
theoretical approximation. This leads to a dependence of the
masses and structure constants calculated above upon weony-

It is not difficult to derive nonrelativistic expressions for
the physical spectral functions

Mo
PP =50 121 0= o), (3.9)

which are obtained by the substitution
1 —_
2 ag2 b _
o(p M)—>2M oA —w),

where A stands for the binding energy in the baryon, and
M = M + A. The nonrelativistic dispersion relation for the
hadronic part of the sum rules has the form

gz
wo—w 2MA—w’

phys
de fra__ | (3.10)
Let us write down the correlators in a region significantly
lower than the threshold w=-M+¢ as t— 0, which
corresponds to the limit p? — 0. In the approximation of a
single bound state the sum rules bring to an expression that
can be expanded in a power series of ¢. Thus, the sum rules
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result in the coefficients of identical powers ¢ being equal:

1 @cont
— do
TJo

Here p; contains the contributions from various operators for
the corresponding scalar correlators Fj.

Introducing for the nth moment of the two-point correla-
tion function the notation

1 Dcont
M, — ,J do —F
T Jo (w0 + M)

M |z}
MM

P1,2 _
(0 +M)"

(3.11)

(3.12)

we obtain for the baryon masses and the structure constant:

M,

M(n) = g (3.13)
|Z(n)|* = % M, M1 (3.14)

where the explicit dependence of the results derived from the
sum rules on the parameters of the scheme (the number n of
the moment) is shown. Therefore, it is necessary to find the
region of parameters in which, first, the results are stable with
respect to variation of n and, second, both the correlation
functions F; and F, yield the same values for physical
quantities: the masses and structure constants. The problem
of the analysis made within the complete QCD was the
presence of a significant difference between the baryon
masses and constants calculated from different F.

3.1.3 Calculation of spectral densities. We now represent the
analytical expressions for perturbative spectral functions in
the NRQCD approximation. When calculating spectral
densities we make use of the Cutkosky rules [44] with the
modifications required by NRQCD. The jump of the two-
point function is calculated with the aid of the following
substitutions for the propagators of heavy and light quarks,
respectively:

1
— L 2mid(po— (m+pP/2m)),
po—(m+p2/2m) T (170 (m P/m))
1
ﬁ—>2n15(p2—m2)
p-—m

In the leading order of the theory covering the effective heavy
quarks their spin interaction splits away, which owing to spin
symmetry leads to the relationships®

p[QE)] =3p,[Q'(E)] =3p[QE)], (3.15)
p:[22)] = 30,[Q'(2")] = 3, [2(®)']. (3.16)
and for the baryon coupling constants in NRQCD one finds:

1z[@)]* =3|z[Q'@)]] =3|Zz[eE)] .

(3.17)

For the perturbative spectral densities p; and p, in front of
the unity operator in F and F, respectively, we will make use
of the smallness of the current mass of the strange quark as
compared to the heavy quark masses. Expanding in powers of
ms we obtain the following expressions for a baryon with a

81n the case of heavy quarks of one flavor the spectral densities for baryons
with a scalar diquark become zero.

scalar diquark composed of heavy quarks of differing flavors:

\/E (:uredw)3/2

2
S , (3.1
1501570 (Mg +w)3 (771,0 +msny 4 mg ’71,2) (3.18)

pr=

where p.q = momg:/(mg + mg) is the reduced mass of the
diquark, Mygq = mg + myp:, and the coefficients n of the
spectral densities are given in Appendix 7.1°.

The first term of the expansion reproduces the results of
Ref. [43] for zero mass of the light quark. For strange baryons
with a scalar diquark, the perturbative density p, is propor-
tional to mg and is not zero:

2V/2
P2 = 1050

(/’Lredw) /27"5 (

(Mg + o) (3.19)

N0t Msiy +m] M.2)-

In the leading approximation of perturbative NRQCD the
correlators F, equal zero for the massless light quark. This is
due to the absence of interaction between the light quark and
the heavy diquark in the given order, so no mass term is
present in the correlator.

The Coulomb interaction inside the diquark can be taken
into account by introducing the Sommerfeld factor C for the
diquark spectral density before integrating over the invariant
diquark mass in obtaining the baryon spectral densities:

Péiq = PEC, (3.20)

and

270 270 -
C=——|1- - .
3v { P ( 3v )}

Here, the antitriplet color structure of the diquark has been
taken into account, and v denotes the relative velocity of the
heavy quarks in the diquark:

(3.21)

4QOQ/ :| 172
(mg —mg)*]

. {1 o (3.22)

where Q7 is the heavy diquark 4-momentum squared.

In NRQCD, a passage to the limit of small velocities is
performed, so the square of the diquark invariant mass
0% = (Mgiq +¢)* and

2morg By

= for e .
E v zﬂred roe< Hred

The modified spectral densities are written down as

pC = H752%s (2 Maiq + ©)
€=
6m? (Mdiq )

(’11 0*’”@’71 L +minf 2)
(3.23)

The leading approximation yields the results for zero light
quark mass [43]. For p2C we have

2
- omg 050 (2Mgig + ©) , ¢
o Mg rap (0T )
dia (3.24)

Application of the expansion in the light quark mass leads to
an insignificant deviation (about 0.5%) from the precise

9 The coefficients of spectral densities not written explicitly in the
subsequent text are also given in Appendix 7.1.
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integral representation, so one is quite justified in using the
approximate expression with the first three terms of the
expansion given in their explicit analytical form.

In a similar manner it is possible to obtain the spectral
functions related to the condensates of light quarks and
gluons. The moments of the coefficients of quark conden-
sates are expressed in the form

M () = :, D py g n+ 1)

+ M Py Maiq (1 +3), 525)
M () = Py Mg ) — : 2, Wiy +2)

G : D Mgy (14 4)

Here P; are the expansion coefficients determined in

Eqn (3.7), and the nth moment of the diquark two-point

correlation function Migiq (1) is obtained by integration of the
spectral density

3/2

12V2 ure/d

pdlq ’ (326)

which has to be multiplied by the Sommerfeld factor C, where
o is substituted for ¢, since in this case there is no integration
over the invariant diquark mass. The modified density

2
iy = s (3.27)
is independent of .

It is interesting to note that within the NRQCD approx-
imation the condensate of light massless quarks contributes
only to the correlators F,. This fact has a simple physical
explanation: in the leading order the light quark operator can
be factored out in the expression for the baryon current
correlator. Indeed, for the contribution of the condensate
one can write the expression

(O[T {070} 0)

i )
72 Oquz qf O)|O><0}T{chliq(“ d1q }|O> +.
where J. ({i (x) is the current of the diquark with the color index
J, defined in Eqn (3.2).

Thus, taking into account only the first x-independent
term in the expansion of the quark correlator in (3.6) leads to
an independent contribution of the quark correlator to the
baryon correlator. Since the diquark correlator in F, is
isolated from the baryon form factor F;, the NRQCD sum
rules in this approximation determine the diquark mass and
structure constant from F, and estimate the baryon mass and
structure constant from F;. These masses and structure
constants differ from each other.

A positive point in this situation consists in the possibility
of calculating the binding energy for baryons with two heavy
quarks: A = M — Mg, and a disadvantage is the instability
of the results of NRQCD sum rules at this stage, since various
form factors or correlators yield different results. In the
complete QCD sum rules, variation of the parameters in the
definitions of baryon currents brings to an admixture of the

diquark correlator in various form factors, so the results of
estimation exhibit large uncertainties. For example, the
characteristic uncertainty in calculations of the baryon mass
in complete QCD is of the order of 300 MeV, i.e. the value is
close to the expected value of A. This result is not unexpected
within the framework of NRQCD analysis. Moreover, it is
evident that the introduction of an interaction between the
light quark and the heavy diquark violates the factorization
of the diquark correlator. Indeed, owing to the higher-order
terms in expansion (3.6) the diquark factorization is violated
explicitly, which provides for convergence of the estimates of
masses and constants obtained from F; and F,. This fact is
numerically demonstrated below.

The contribution to the spectral density moments,
determined by the condensate of light quarks together with
the mixed condensate and the product of quark and gluon
condensates, can be calculated with the aid of the operator
expansion (3.6):

(n+2)!' mg g
nl 16 EIﬁnJrZ

(n+4)! n % 2 )
i 288 \n & )P

The corrections related to the gluon condensate have the
following form for the operator O4 = ((os/1)G?):

gﬁ;}t/ _ gﬁéﬂ?@ _

(3.28)

5/2
sz _ (mé +Wlé, + llQOQ')ure{i \/(3
! 21 x ZIOﬁnmémé,(Mdiq + w)?

2 2 2
X (nfo —i—msnfl —l—msz ’716,2) . (3.29)

For the nonzero light quark mass one obtains a nonzero
density p{~ proportional to my:

2
@ my(mg +mg, + IIQOQ/),urse{1 Vo

GZ GZ
Py = Ny o+ msn s

2 3 x29\/§nmémé,(/\/ldiq+w) (121 s71211)
(3.30)

2 2 9Md‘ + o
G G iq

— —(9My; , 3.31
M0 (OMgiq + ) M1 = Maiq + @ ( )

For the condensate product

<t7q><°;; G2>,

where the gluon fields, unlike the light quark, are related to
the heavy quarks, it is possible to calculate the two-point
correlation functions directly:

5/2
lure/d (mQ + an, + 11}/nQ’nQ ) quz

FI% () = — , M (w) =0,
2 29\/51'EI’VZQI’I’IQ/(— )/2 !

(3.32)

since we restricted ourselves to examining operators of
dimension not higher than 7, while the nonzero term in F)
arises in the fifth order of expansion (3.7). This result is
presented in a form permitting analytic continuation in
o=-M+w.

Thus, we have formulated the NRQCD sum rules in
which account is taken of perturbative terms and vacuum
averages of quark—gluon operators that include the con-
tributions from condensates of light quarks, gluons, their
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product and mixed condensate. We note that the condensate
product plays an important part for baryons with two heavy
quarks, and we have presented the complete expression
within NRQCD for this term that includes the interaction of
nonperturbative gluons both with light and with heavy
quarks. We have correctly taken into account the Coulomb
interaction for the perturbative spectral densities of the heavy
diquark that is important for the interaction of nonrelativistic
heavy quarks, and, finally, we have obtained the relationships
of spin symmetry for the baryon structure constants in
NRQCD:

\zE)]* = 3|z} = 3|zE"

3.1.4 Anomalous dimensions of baryon currents. For relating
the correlators of NRQCD sum rules with the quantities in
complete QCD it is necessary to take into consideration the
anomalous dimensions of effective baryon currents with
nonrelativistic quarks. Indeed, the following relation holds
valid in the leading order of NRQCD:

CD NRQCD
JQ = ’C](Ofs, Hsofts :ulmrd) J Q ’

where the coefficient KC;(os, Ueofis Hnara) depends on the scale
of the normalization of u and satisfies the normalization
condition at the point piy, .4 = Maiq-

The anomalous dimensions of NRQCD currents in the
leading order in the inverse heavy quark mass are indepen-
dent of the diquark spin structure, so one obtains [39]

dInCylog, 1) o=\ (m)
r= dlIn(u) _mz::l an) T
y(l) = —-2Cp(3a—3)+3Cp(a —2), (3:33)

1 .
P = o {-48(-2+6(2)) G
+ Ca[(104 - 240((2)) Cp — 101y ]
— 64Cyn Ty + Cp(—9CF + 52n¢T¥) }
with

N2
2N

N.+1
Cp =
B ZNC )

CF CA:NC7

Tr = 1/2 for N, = 3, and ny is the number of light quarks. In
equations (3.33) the one-loop result involving the arbitrary
gauge parameter a is presented, while the two-loop anom-
alous dimension is written in the Feynman gauge: a = 1.
Numerically, for ny = 3 and a = 1 the values desired are

yW=—4 @~ _188.24. (3.34)
In the leading logarithmic approximation with a one-loop

precision the coefficient X', is given by the expression

(1D /28
O(S(:uhard))} /2P

ots (soft) (3.39)

K;J(fxs’ Hsofts :uhard) = (

and the coefficient of the -function is expressed as

11 2
ﬁOZ?chgnfzg.

For calculation of the two-loop contribution to ;, know-
ledge is required of the corrections in the next order in o in
addition to the anomalous dimensions. At present, these
corrections have not been calculated, so we will restrict
ourselves to dealing with the one-loop precision.

Further, it is necessary to determine the normalization
scale of p ., for NRQCD estimates, which is given by the
average transfer moment in the doubly heavy diquark:

2 _ .
Hsofe = 2ftreq leq )

where Tgiq is the kinetic energy in the system of two heavy
quarks, which is known to be phenomenologically indepen-
dent of the quark flavors and approximately equal to 0.2 GeV.
Then, one finds

K[Q(E).] ~ 1.95, K[Q(

[1]

(3.36)

with a characteristic uncertainty of about 10%, depending on
the variation of the initial and final points gy, 4 sofi-

Finally, we note that the values of ; do not affect the
estimates of baryon masses, obtained within the NRQCD
sum rules, although they are essential for calculating baryon
structure constants that acquire these multiplicative factors.

3.2 Numerical estimates

In the present review the spectral functions of baryon current
correlators are examined within the moment scheme for
NRQCD sum rules. We note that the dominant uncertainty
in this scheme is related to the variation of heavy quark
masses. For the analysis, the following range of masses was
chosen:

my =4.6-4.7GeV, m.=135-140GeV, (3.37)

which is usually applied to estimating sum rules for heavy
quarkonia. An important parameter is the QCD coupling
constant determining the Coulomb interaction inside the
heavy diquark. Indeed, it enters linearly into the diquark
perturbative functions. Thus, introduction of og/v-correc-
tions is important both for the baryon structure constants
and for the relative contributions from the perturbative part
and from the condensates to the baryon masses.

To reduce the uncertainty, we shall apply the same
approach to heavy quarkonia, where it proved to work well,
and determine the characteristic values of o for doubly heavy
systems from comparison of the calculated results with data
on the lepton constants of heavy quarkonia, known experi-
mentally for c¢c and bb or calculated within various
approaches for be. Calculations yield the following coupling
constants for Coulomb interactions:

as[bb] = 0.37,  ascb] =0.45,  ogfcc] = 0.60. (3.38)

Since the square of the diquark size is twice that of heavy
quarkonium composed of heavy quarks of the same flavor
(see the dependence of mean relative momentum squared of
the heavy quarks on kinetic energy), the effective Coulomb
exchange constant should be recalculated in accordance with
the QCD evolution equation. In the one-loop approximation
one arrives at

%[00']
9/41)0[00]In 2’

“s[QQ/] = 1—(
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so that

os[bb] = 0.45,  afbc] =0.58,  afec] = 0.85. (3.39)

As to the dependence of the results on the quark masses, it is
necessary to stress that the pole masses in QCD perturbation
theory are not consistently determined owing to infrared
problems usually related to renormalon arbitrariness [45].
As a result, it is important to fix the definition of the heavy
quark mass [46—48].

In the given order in o within the NRQCD sum rules we
make use of the leading approximation of the quark loop with
due account of Coulomb exchange between the heavy quarks.
At this stage the heavy quark masses and the Coulomb
exchange constant are strictly fixed by data on the lepton
constants and on the charmonium and bottomonium masses
in the sum rules with the same precision. The stability or
convergence of the sum rules method applied to heavy
quarkonia '° leads to the following quark masses:

me =140=£0.03GeV, mp =4.60+£0.02 GeV

that are in good agreement with the heavy quark masses
calculated within the scheme involving subtraction of infra-
red contributions: the potential subtracted mass mf> =
460+0.11 GeV, and the kinetic mass m"=
4.56 +0.06 GeV were obtained within the QCD sum rules
for bottomonium with a two-loop precision [46, 48]. The
similar 1S-mass determined in Ref. [47] has a slightly higher
value.

In the leading order in «s, the kinetic and potential masses
mentioned above set the threshold for the quark contribution
and can be adopted as appropriately determined heavy quark
masses in calculations of the characteristics of baryons with
two heavy quarks. The mass values depend on the normal-
ization point which was chosen to be in the 1 -2 GeV region.
However, the interval of admissible variations in the heavy
quark masses was somewhat increased in calculations.

The sum rules for bottomonium and charmonium fix the
Coulomb constants, since stability in the course of variation
of the moment number fixes the mass of the heavy quark,
while at the same time the lepton constant depends linearly on
the respective constant o (Fig. 7).We note that the depen-
dence of the Coulomb constant upon the quark composition
of quarkonium is consistent with the renormgroup depen-
dence on the dimensions of the system composed of two heavy

0.8
Jfr, MeV
0.7 |

0.6 -

0.5 | | | | |

Figure 7. Lepton constant Y in the two-point sum rules within the spectral
density moment scheme for my, = 4.63 GeV (dashed line) and my =
4.59 GeV (solid line).

10 We have required the ratio of the initial moments of spectral densities,
calculated from data and within sum rules, to be stable.
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Figure 8. Mass difference for Zy, baryons, obtained within the NRQCD
sum rules for form factors F; and F» in the spectral density moment
scheme.

quarks. The deviation of further estimates from conventional
values of the Coulomb constants is at the level of 5%. As we
already mentioned, the uncertainty due to the coefficients of
matching NRQCD and complete QCD amounts to about
10% in the baryon coupling constants.

The dependence of estimates on the threshold for the
continuous spectrum is not so strong as when the heavy quark
masses are varied. We varied wcon; Within the interval

Weont = 1.3—1.4 GeV.. (3.40)

The range of values of quark and gluon condensates is
restricted:

(Gq) = —(250—270)* MeV?3 |

mg = 0.75-0.85 GeV?, (3.41)

<% G2> = (1.5-2) x 1072 GeV *.
T

The main source of uncertainty in the ratio of baryon
coupling constants is the ratio of quark condensates for
strange and light quarks. We assume (5s)/(gq) = 0.8 0.2,
which corresponds to the admissible uncertainty obtained in
the QCD sum rules for my, + my = 12— 14 MeV at a virtuality
scale of 1 GeV [49]. The strange quark mass mg =
150 &+ 30 MeV, which is the conventional estimate consistent
with the sum rules and quark current algebra, where only the
quark current mass is involved. Thus, we have described the
choice of parameters.

Figure 8 presents the calculated mass difference obtained
with the aid of correlators!! F; and F, for 2y baryons (we do
not present the plots for E.. and Ey, since they qualitatively
and quantitatively repeat the picture clearly seen in Fig. 8).
From the figure one can distinctly see that at small moment
numbers for the spectral densities the difference in masses
between the baryon and the diquark is

A =040 40.03 GeV, (3.42)

which represents a result that is in good accordance with
estimates for the case of heavy—1light mesons.

! The gluon condensate value (o5 /m)G?) = 1.7 x 1072 GeV * was fixed in
calculations, while the value of mZ was chosen to be within the region given
above, so as to provide a mass difference of zero, although it must be noted
that variation of the parameters leads to the uncertainties indicated below.
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In the stability region for the mass difference it is possible
to fix the moment number of the spectral density (say, set
n=27+1 for Ey) and to calculate the respective baryon
masses:

M[E.] = 3.47£0.05 GeV,
M[Ep] = 6.80 £ 0.05 GeV,
M[Zpp) = 10.07 £ 0.09 GeV .

(3.43)

Here, the spin-dependent splitting given by the os-corrections
to the interaction of the heavy diquark with the light quark
was not taken into account, because the said corrections have
not been calculated yet. The uncertainties in the mass values
are mostly due to variation of the heavy quark masses. Thus,
the stability of NRQCD sum rules permits one to improve the
precision of estimates as compared to the analysis made
within the complete QCD sum rules [38]. The values
obtained are consistent with the results of calculations done
within the framework of potential models (see Section 2).

In two-point sum rules for the Q. mass (the derivations
for other doubly heavy baryons are similar) one can see the
stability of estimates with respect to the number of the
spectral density moment for both the correlators F; and F;.
This may be linked to the violation of factorization for the
diquark and baryon correlators, mentioned above in the case
of a massless light quark, already within the framework of the
perturbative approximation unlike the case of the Z,. baryon.
The stability regions for F} and F, do not coincide, since the
contributions from operators of higher dimensions become
significant for various moment numbers. However, the
quantity

3 (M) + M)
exhibits a larger stability interval, and we shall make use of
this fact in order to determine the masses of the Qg+ and
Eoo' baryons (Fig. 9).

Thus, in the present review two stability criteria for
baryon masses are examined: the first one deals with the
difference between masses obtained from correlators F; and
F,, while the second has to do with the half-sum of these
masses. The second criterion is especially reliable for baryons
with strangeness, since the stability regions of both correla-

7.1
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M, GeV

6.7 -

6.6

Figure 9. Masses of the Ep. and Q. baryons, obtained in the NRQCD sum
rules when the results for the two correlators are averaged arithmetically.
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Figure 10. Mass difference AM = Mq,_ — Mz

=,. obtained from the results
presented in Fig. 9.

tors correspond to different moment numbers. Here, the mass
difference for the two correlators within the stability regions
determines the precision of estimate within the framework of
QCD sum rules.

The following baryon masses were obtained in the second
computing method:

M[Qe] = 3.65+0.05GeV, M[E,] = 3.55+0.06 GeV,
M[Qp] = 6.89 £0.05 GeV,

M[Qyp] = 10.09 + 0.05 GeV,

M[Epe] = 6.79 +£0.06 GeV,

(3.44)

The estimates for the Zpp+ masses within methods (3.44) and
(3.43) are in good agreement with each other.

We shall further examine the difference between the
masses of doubly heavy baryons with and without strange-
ness (Fig. 10):

% [(M1[Qbe] + Ma[Quc]) — (M1[Enc] + Ma[En])]

In such a scheme for determining baryon masses this quantity
has the meaning of the average mass difference for which a
broad stability interval is observed, which signifies that this
method yields a good accuracy of the estimate:

AM = M[Quy] — M[Ewy] = M[Qc] — M[E]
= M[Quc] — M[Ep] = 100 £ 30 MeV.

Figures 11 and 12 show the dependences of the baryon
coupling constants in the moment scheme for NRQCD sum

0.028
0.024 |
0.020 B

0.016 -

|Z*, GeV?®

P -

0012 k= === ====——"7

0.008

0.004 | | | | | | |

n

Figure 11. Coupling constants \Z\z for Qy baryons, calculated within the
NRQCD sum rules for correlators F; and F, in the spectral density
moment scheme.
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Figure 12. Coupling constants |Z|2 for Ey, baryons, calculated within the
NRQCD sum rules for correlators F; and F, in the spectral density
moment scheme.

rules for baryons with and without strangeness, respectively.
Numerically we find

120" = (10.0 £1.2) x 107 GeV?,
|Z[E]|” = (7.240.8) x 107 GeV*®,
|Z[Qn]|” = (15.6 4 1.6) x 107 GeV®, (3.45)
|Z[Ep]|” = (11.6 + 1.0) x 107> GeV*,
|Z[Ow]|* = (6.0+0.8) x 1072 GeV?,
| Z[Ew][" = (42+0.6) x 102 GeV°.

In Fig. 13, the results derived from sum rules are presented for
the ratio | Z[Quc]|*/|Z[Ebe]|” of baryon constants, so that

|Z[ Q)] ’
=8 y

|Z[0] [
| Z[Ew]|*

_|zie]

5 =13402.
|Z[Ecc]|

As mentioned above, the uncertainty of this estimate is
mainly related to variation of the ratio (ss)/{(gq) = 0.8 £ 0.2.
From the figures one can see that the stability region for the
baryon constants coincides with the region of stability for the
averaged mass.

For comparison we present the relationships between the
baryon structure constants and their wave functions calcu-
lated within the framework of potential models (PM) in the
approximation of quark —diquark factorization:

|ZPM| = 2V/3 | P4iq (0) P1,5(0)] , (3.46)
where Y 4iq(0) and ¥ (0) are the wave functions at zero point
for the heavy diquark and for the light (strange) quark —
diquark system, respectively.

In the approximation used the values of ¥(0) were

calculated in the Buchmiiller—Tye potential [13], thus
=16 |
11
N 14
o
ﬁ 1.2 -
ﬁ 1.0 | | | | | |
0 5 10 15 20 25 30

Figure 13. Ratio |Z[ch]‘2/‘Z[EbcH2 calculated within the NRQCD sum
rules in the spectral density moment scheme for (5s)/(g¢) = 0.8.

giving
Var | i(0)] =0.53 GeV?/?,
Vam | ?,(0)| =0.64 GeV*/?2,
VAn [Pec(0)] = 0.53 GeV*/2,
VA |Pre(0)] = 0.73 GeV¥2,
VAR |P4(0)| = 1.35 GeV /2,

In the static limit of the potential approach we have
| ZPM
| ZPM
| ZPM

Q)" = 8.8 x 107 GeV*,
el = 6.0 x 107 GeV*,
vel|> = 1.6 x 1072 GeV?®,

)

(3.47)

WS WS s

|ZPMEe]| = 1.1 x 1072 GeV,
| ZPMQu]|” = 5.6 x 1072 GeV*,
| ZPM[Ep)[* = 3.9 x 1072 GeV®,

The results of the potential model (3.47) are close to the
values obtained within the NRQCD sum rules (3.45), from
which it can be seen that the SU(3)-splitting of baryon
constants ]Z II°/|1Z[2]]> is determined by the ratio
|50 | /|¥1(0 |2 =1. 45 which is consistent with the esti-
mate from the sum rules.

The values presented must be multiplied by the Wilson
coefficients obtained from expansion of the operators in
complete QCD in terms of the NRQCD fields by the
anomalous dimensional method. This procedure leads to the
following baryon coupling constants:

|Z[0:]|” = (38 £ 5) x 107 GeVS,
| ZEe]|* = (2743) x 1073 GeV?,
1Z1Q]|” = (36 £ 4) x 107 GeV*, (3.48)
V4=
[
[

( )
=(2743) x 107* GeV®,
Qu)|* = (10£1) x 1072 GeV?,
= (70 £8) x 107 GeV?®.

Thus, reliable estimates have been obtained within the
framework of the NRQCD sum rules for the masses and
structure constants of baryons with two heavy quarks.

3.3 Discussion

We have considered the NRQCD sum rules for two-point
correlators of baryon currents involving two heavy quarks.
The nonrelativistic approximation for heavy quarks permits
one to fix the structure of the currents and to take into
account the Coulomb-like interactions in a doubly heavy
diquark. Moreover, we have introduced operators of higher
dimensionalities, responsible for quark —gluon condensates,
s0 as to achieve convergence of the sum rules method for two
scalar functions of correlators.

In the leading approximation that includes a perturbative
term and the contributions from quark and gluon conden-
sates, the correlators of the three-quark state and of the
doubly heavy diquark are factorized into separate functions,
when the mass of the light quark is zero. As a result, the sum
rules lead to the masses and coupling constants differing in
value when calculated with various functions. This means
that such an approach will diverge until the contributions
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from the product of the quark and gluon condensates and of
the mixed condensate are taken into account. The interaction
of two heavy quarks with a light quark violates factorization,
which permits one to obtain reasonable estimates for the
masses and coupling constants. Moreover, the calculated
binding energy of the doubly heavy diquark is in good
agreement with estimates made within the framework of
potential models.

In doubly heavy baryons with strangeness, factorization
of the diquark correlator is already violated in the quark-loop
approximation in QCD perturbation theory, so that the best
convergence of the sum rules method is achieved and both
correlators have stability intervals when the numbers of the
spectral density moment are varied. Estimates have been
made of mass splittings between strange baryons and
baryons with a massless light quark, Qg and Egp/, and of
the ratio of their baryon coupling constants,
1 Z[Q00/)*/|Z[Eoo/][*- Thus, the NRQCD sum rules permit
the improvement of the analysis of masses and coupling
constants for doubly heavy baryons and obtaining of reliable
results.

4. Baryon production processes

When Epg: baryons with two heavy quarks are produced,
the small ratio A/mgy and, consequently, the small
coupling constant of the QCD quark—gluon interaction
[as ~ 1/1n (mgo/A) < 1] permit one not only to examine the
production of the two pairs of heavy quarks 0Q and Q'Q’, of
which Zpp- baryons are composed, within QCD perturbation
theory, but also to factor out in a certain manner the
contributions due to perturbative heavy quark production
and their subsequent nonperturbative binding into a heavy
diquark.

For calculating the production cross sections of Ep.
S-wave states at the Z-boson peak it is sufficient to evaluate
the matrix elements for the cojoint production of bb and
Cc pairs in the antitriplet color state of the bc pair with a
definite total quark spin (S = 0, 1), so that the quarks move
with the same velocity equal to the velocity of the diquark
they compose. Then it is necessary to multiply these matrix
elements by a nonperturbative factor determined from the
spectroscopic characteristics of the bound state (by the wave
function of the diquark, giving the probability of observing
quarks at a small distance from each other in a bound state,
and by the quark mass).

Such a picture is due to the characteristic virtualities of the
heavy quarks in the heavy diquark being significantly smaller
than their masses owing to the nonrelativistic motion of the
heavy quarks in the bound state, whereas the quark
virtualities at the moment of their production amount to
values of the order of their masses. Therefore, when
examining Zp. production one can consider the b and ¢
quarks in the diquark to be close to the mass surface and
practically at rest with respect to each other. Thus, when the
nonperturbative factor has been singled out, analysis of the
heavy Ey. baryon production is determined by the examina-
tion of matrix elements calculated within the QCD perturba-
tion theory, if the total baryon production cross section and
its differential characteristics are considered to repeat the
respective quantities for the heavy diquark.

First of all, let us note that the necessity for two pairs of
heavy quarks to be produced in electromagnetic and strong
interaction processes for the formation of Zg¢- results in the

leading order of QCD perturbation theory having an
additional factor of smallness of the order of &2 compared
with the leading order of perturbation theory for the
production of heavy quarks of the same flavor, for instance,
of the QQ pair:

o[Egp] _#2[¥(0)
mé/

This provides for a small Zpps yield compared to the
production of, say, heavy mesons.

Within this approach, it is important and necessary to
perform analysis of the leading approximation of QCD
perturbation theory for Zpo: production, which permits
one to obtain a series of analytical expressions for the
Epo’ production cross sections, among which one must
especially note the fragmentation functions of heavy
quarks into a heavy diquark and of the diquark into a
baryon in the scaling limit (M?/s — 0). Thus, Ego-
fragmentation production can be reliably described analy-
tically, which opens up new possibilities in studying QCD
dynamics that is essential in the complete picture of heavy
quark physics.

The mechanism of baryon production with two heavy
quarks in hadron collisions implies the analysis of a
complete set of QCD perturbation theory fourth-order
diagrams in the coupling constant, since transverse
momenta, at which the fragmentation mode is not pre-
dominant, are characteristic for the total cross sections of
production processes and for the dominant contributions.
We shall study the role of higher twists in the transverse
momentum of the doubly heavy baryon in associated
production of these states in hadron interactions and
quantitatively determine the applicability boundaries for
the factorization mode of hard heavy quark production
and their subsequent fragmentation.

4.1 The production of doubly heavy baryons

in ete -annihilation

Detailed investigation of the production mechanisms of
hadrons with two heavy quarks reveals that the expected
yield of such hadrons compared to the production of hadrons
with a single heavy quark amounts to a value of the order of
10-3—10~*. For example, the number of events with heavy
quarks at the Z-boson pole is at the level of 10°, so the number
of hadrons with two heavy quarks is of the order of 10> —103.
Taking into account concrete decay modes of hadrons with
two heavy quarks, only the registration of individual events
with hadrons should be expected, which renders their
observation quite problematic.

In this section we consider the production of doubly
charmed Z() baryons in the conditions of a B-meson
factory of high luminosity (L = 103 cm~2 s~!), where the
Ec(c*> yield is higher by two orders of magnitude than at the
Z-boson pole.

4.1.1 Fragmentation mechanism. In Ref. [50], estimates have
been obtained of the production cross sections for Ec(g ), Ebz ,
= () . . '
and E,; baryons in the heavy quark fragmentation region at
high energies. These estimates are based on an analytic
computation of heavy quarkonium production in the QCD
perturbation theory in the limit of a small ratio M?/s and in
the nonrelativistic potential model. The momentum spectrum

of the cc diquark was considered identical to the cc heavy



480 V V Kiselev, A K Likhoded

Physics— Uspekhi 45 (5)

quarkonium spectrum % up to a color factor:

_ 2 [Re(O)

2 2
De_(2) = o m a(4m:) F(z), (4.1
where
z(1—z)* 3
F(z) = B (16 — 32z +722% — 3227 4 52%),
—Z

and R (0) is the radial wave function of the bound diquark at
zero point.

Notice that identical cc quarks in the antitriplet color state
can only have a symmetrical spin function in the S-wave, i.e.
can only be in a state with the total spin S = 1. Normalization
of the fragmentation function D, _, (z) is determined by the
model-dependent quantity R.(0). In Ref. [50], quite a rough
approximation of the Coulomb potential was applied to the
heavy quark system. This factor introduces a noticeable
uncertainty > in the estimates of the Z() yield. Moreover,
expression (4.1) obtained in the scaling limit (M?/s — 0) is
not appropriate for estimating the Eéj ) production at
B-factories, where M?/s is not small. We propose another
approach to estimating the yield of hadrons containing two
heavy quarks on the basis of quark —hadron duality.

4.1.2 Estimates from the quark —hadron duality. The produc-
tion cross sections of B.-mesons in S-wave states at the
Z-boson pole, calculated in the fragmentation model, are in
good agreement with the estimated production cross sections
of bc quark pairs in the singlet color state with a small
invariant mass:

my +me < M(bc) < My, = Mg + Mp +AM ,

so that AM = 0.5—1 GeV.

Over the duality interval (4.2), the bc diquark production
cross section is approximately equal to the bc pair production
cross section. Isolating the antitriplet color state of bc by
multiplication by the factor 2/3, we obtain an estimate of the
E,.” production cross section at the level

(4.2)

O’[Elliz)] ~ 6 X 1074
a[bb] ’

which is six times larger than the estimate obtained by Falk et
al. [50] for the production of 1S states. This difference stems,
first, from the contribution of higher diquark excitations
being taken into account in the quark—hadron duality
approach and, second, from strong suppression due to the
quantity Ry.(0) which is clearly underestimated in the
Coulomb potential.

Now, consider the production of Z) baryons at the
energy of the B-meson factory (y/s =10.58 GeV). Once
more we recall that expression (4.1) is not applicable at the
given energy, since the power corrections in M?/s are
significant. We have presented a detailed description of the
method of numerical computation in the leading order of
QCD perturbation theory in Refs [51—54].

12 Ref. [50] erroneously contains an additional factor of 2.

13 Calculating the diquark wave function in the model with the Martin
potential with due account of the numerical factor 1/2 for the antitriplet
color quark state enhances the corresponding factor by approximately one
order of magnitude.

In the quark —hadron duality method, the cross section of
associated production of a bound quarkonium state can be
evaluated by the formula

Z olefe” — (nL(cc),)cc]
nL,J
olefe” — (C0)gppecce] - (4.3)

singlet

Here, M; = 2m,. is the kinematical threshold of cc pair
production, and My =2Mp+ AM, where AM =
0.5—1 GeV. Numerical calculation of QCD perturbation
theory diagrams for the production of bound 1S and
2S levels of charmonium for /s = 10.58 GeV, oy = 0.2 and
with values of the radial wave function at zero point, Rs(0),
determined from experimental data on y(nS) lepton decay
widths [23], results in the following estimates for the cross
sections required:

o[n.(1S)] =0.025 pb,
a[y(18)] = 0.055 pb,

[n.(2S)] = 0.003 pb,
o [¥(2S)] = 0.010 pb.

The sum of the cross sections taken over the S-wave states of
charmonium below the decay threshold into a DD meson pair
is

(4.4)

o {Z Hes w] =0.093 pb.

We note that the ratio between the vector state and
pseudoscalar state yields at the energy considered amounts
to wy/wp =22 as compared to the ratio wy/wp =1
obtained from the fragmentation mechanism [50].

Estimates of the integral in the right-hand part of Eqn (4.3)
give

0sc(AM = 0.5 GeV) = 0.093 pb,

(4.5)
0ec(AM =1 GeV) = 0.110 pb, 4.6
where m, = 1.4 GeV was assumed. From equations (4.4)—
(4.6) it follows that the quark —hadron duality relation (4.3) is
satisfied well for bound states of the cc system.

As shown by calculations, the invariant mass spectra for
cc and cc pairs practically repeat each other in the region of
small invariant masses. Therefore, the estimates for the
production cross sections of the cc diquark and of the
Cc pair are approximately the same in the duality interval
considered [compare with formulas (4.5) and (4.6)]:

Gee(AM = 0.5 GeV) = 0.086 pb,
Gee(AM =1 GeV) =0.115 pb . (4.8)

Isolating the antitriplet color state, we obtain the total

production cross section of Z(*) baryons:

a2 = (70 + 10) x 1073 pb, (4.9)
so the relative yield of doubly charmed baryons equals

=7x%x107°.

(4.10)

The number of events involving Z() production at the

luminosity L=10* cm~2s~' amounts to N(E()=7x10
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per year, which is higher by two orders of magnitude than the
Ec(é‘ ) yield at LEP. The cc diquark spectrum obtained at the
antisymmetric collider KEK is presented in Ref. [55].

Thus, in this section we have calculated the production
cross sections of the doubly charmed Z() baryon in the
leading order of QCD perturbation theory on the basis of
quark —hadron duality, as well as the Ec(: ) production cross
sections at the energies of a B-meson factory, where the
fragmentation model [50] cannot be applied.

The main theoretical uncertainty in the estimation of
production cross sections of doubly heavy baryons is related
to the description of the heavy cc-diquark hadronization
process. A significant fraction (1/3) of the diquarks are
produced in the sextet color state and can form both exotic
four-quark states ccqq and DD meson pairs. Like in work
[50], we assume the antitriplet color state to undergo
hadronization into the EL(L* ) baryon with a 100% probability.
Thus, 10* EC(C* )-production events per year can be expected
given a luminosity L = 103 cm~2 s~! at a B-meson factory.

4.1.3 Exclusive diquark pair production. In the near-threshold
region of doubly heavy baryon production in e*e~-annihila-
tion a noticeable contribution to the cross section can be
made by pair production. For estimating the yield of such
events, a computation was performed in Ref. [56] of the cross
sections of exclusive pair production of doubly heavy
diquarks. Under the assumption of 100% diquark fragmenta-
tion into baryons, the yields of diquark pairs and of baryons
can be considered equal to each other. The authors of Ref. [56]
dealt with both axial-vector and scalar states of S-wave
diquarks: calculations were done of amplitudes, as well as
differential and total production cross sections for scalar—
scalar, scalar —vector and vector — vector pairs. For details we
refer the reader to the original paper [56]. For illustration, we
present the expression covering the total production cross
section for scalar pairs as a function of the square of the total
energy s:

3 i 4
o00 = 256 % |Waig(0)|( 1 —

(4.11)

4M\?
s) ’

Here, P 4iq(0) is the diquark wave function at zero point, while
the form factor has the form

2M? (gam m
oo = ocsocemM{<q—22+q—12> - ("2 2 4 3‘)}, (4.12)

mj ny N ny ny

where ¢, are the heavy quark charges, m > are their masses,
and M = my + my.

Numerical estimates show that the production of axial-
vector heavy diquark pairs predominates, and that, as
compared with the yield of heavy quark pairs, the fraction
of diquark pairs amounts to (2—6) x 107°. This means that,
say, at B-meson factories among the events with charm one
can also try to search for doubly heavy baryon pair
production events that amount to 10% of single particle
production events.

4.2 Perturbative diquark fragmentation

In this section we examine baryon production under
fragmentation of heavy vector and scalar particles that
interact with the quark. From the QCD standpoint, a small-
sized doubly heavy diquark represents a local triplet field, so
the results obtained can be applied to calculating the

fragmentation of vector and scalar diquarks into baryons.
We employ QCD perturbation theory for computing the hard
fragmentation amplitude that is factorized from the soft
bound-state production amplitude. Doubtless, such a
method is quite precise, if the hardness is provided for by the
large mass of the quark that together with the diquark forms a
hadron state — a baryon, for instance, in the case of bb
fragmentation into bbc. The expressions obtained, however,
can also be applied for light quarks as QCD-motivated
parametrizations.

Fragmentation of the scalar triplet color local field was
considered in Ref. [57]. A new problem arising in the case of a
vector diquark is the choice of the Lagrangian liable for the
interaction of the vector colored particle with the gluon field.
Itis possible to add to the Lagrangian obtained by elongation
of the derivatives in the free vector field Lagrangian

1 -
_E Huva ) H;w = a,qu - aqua

where U, is the vector complex field, a gauge invariant term
proportional to the interaction of the spin tensor Slf‘{’ with the
gluon field strength tensor G*':

1
oaff asf osp
Sib = (5250 — 626!,

S;L(»ﬂ G - Uﬁ UG‘ ’ iy 2

which leads to a parameter appearing at the interaction vertex
of the diquark and the gluon (the anomalous magnetic
moment). Our interest is in considering the high-energy
production of a spin-1/2 bound state containing a heavy
vector particle in relation to the behavior of this parameter.

At high transverse momenta, the predominant production
mechanism for bound heavy baryon states is diquark
fragmentation that can be computed within perturbative
QCD [58] upon separating the soft bound-state production
factor obtained within the framework of nonrelativistic
potential models [8]. The fragmentation function is universal
for all high-energy processes involving direct baryon produc-
tion.

In the leading order in «s, the fragmentation function has
a scaling shape which is considered the initial condition for
perturbative QCD evolution resulting from hard gluon
emission by the diquark before hadronization. The splitting
function differs from the similar function for the heavy quark
owing to the spin structure of the gluon coupling with the
diquark that is a vector or scalar particle in a triplet color
state.

In this review the fragmentation scaling function is
calculated in the leading order of perturbation theory. The
limit of an infinitely heavy diquark (Mgjq — o00) is obtained
from examining fragmentation in QCD. Computing the
heavy baryon distribution function over transverse momen-
tum with respect to the fragmentation axis within the
framework of the leading order of QCD perturbation
theory, we find the splitting kernel in the DGLAP (Dok-
shitzer — Gribov — Lipatov — Altarelli — Parisi) evolution, and
we obtain and solve the one-loop equations of the
renormgroup for moments of the fragmentation function.
These equations are universal, since they are independent of
whether the diquark is in a bound or free state at low
virtualities, where the mode of perturbative evolution
ceases. As a result, expressions are obtained for the integral
probabilities of diquark fragmentation into doubly heavy
baryons.
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4.2.1 The fragmentation function in the leading order. The
contribution from fragmentation to direct heavy baryon
production takes the form

do[E(p)] = Jl dzds {diq (1_;) M] Daiq2(2, k).

0

Here, do is the differential production cross section of a
baryon with a 4-momentum p, d is the hard production cross
section of a diquark with a momentum p/z, and D(z) is
interpreted as the fragmentation function depending on the
fraction of the momentum, z, carried away by the bound
state. The quantity u determines the scale of factorization.

In accordance with the general form of DGLAP evolu-
tion, the u-dependent fragmentation function satisfies the
equation

aDdqu:(z u) ! 1 V4
=BT — | dy = Paig—diq| = 1t ) Daiq—z(1, 1) ,
alnu J: y y diq — diq ¥ u diq ._(y H)

(4.13)

where P is the kernel due to the emission of hard gluons by the
diquark before the production of a heavy quark pair.
Therefore, the initial form of the fragmentation function is
determined by the diagram shown in Fig. 14. Consequently,
the corresponding initial factorization scale is specified by
u=2mgp. Moreover, the fragmentation function can be
calculated by expansion in a power series of ag(2mg). The
leading order contribution is computed in this section.

M diq

[1]

q

Figure 14. Fragmentation diagram of the diquark (diq) into the heavy E
baryon.

Let us consider the fragmentation diagram in a system
where the initial diquark momentum ¢ = (o, 0, 0, ¢3), and the
momentum of the baryon is p, so that

=5, p>=M>.

In the static approximation for a bound state of a diquark and
a heavy baryon we have the following relations for the heavy
quark and diquark masses:

mo=rM, Mgq=1—-r)M=7M.
The interaction vertex of a vector diquark and a gluon is
written as follows

T,0% = —igt{gu(q +1p), — uu[(1 + 2)ip — xq] |

— gu[(1+%)qg =]}, (4.14)

where % is the anomalous magnetic moment, and ¢“ is the
QCD group generator in the fundamental representation.
The sum over the polarizations of the vector diquark with
a momentum ¢ depends on the choice of gauge of the free
Lagrangian field (for example, the Stueckelberg gauge), but

the fragmentation function being calculated does not depend
on the gauge parameter changing the form of the contribution
from longitudinal field components. Thus, without restriction
of the general character of the analysis the sum over
polarizations is chosen in the form

qudy
t

P(q)/,w = 7gu\/ +

The matrix element for fragmentation into the spin-1/2
state is written as

24/ 21 o R(0)
VM3 (s — /\/lfiq)z
X pup @y" (D — M)y"y EM

m =

P(q)vé P(fp)yn Txl;\"/g

(4.15)

whereas the sum over the gluon polarizations — in the axial
gauge with n = (1,0,0,—1):

kyn, + kyny,

k=qg—(1-rp.
= , g—(1—=r)p

p,uv(k) = _g.“" +
The spinors & and g in relation (4.15) correspond to the
baryon and the heavy quark accompanying fragmentation,
M, stands for the matrix element for hard diquark produc-
tion at high energies, and R(0) is the radial wave function at
zero point.

Squaring the matrix element and summing over the
helicities of the particles produced, the following expression
is obtained:

WE* = W, ML M

In the limit of high energies (gn — o0), the tensor W,
behaves like

W =—8uwW+ Ry, (4.16)
where R, may depend on gauge parameters and on
expansion in the Lorentz structures leads to scalar quantities

that are small compared with W in the limit gn — oc.
We shall denote

pn
z=—.
qn

The fragmentation function is determined by the expression
[59]

1 M2 m}
D(Z) :WJdSG(S_T— 1 —Q2>W

[Wis given in Eqn (4.16)]. The integral in the expression for
the fragmentation function at a constant anomalous magnetic
moment differing from —1 diverges logarithmically.

We have considered two cases of anomalous magnetic
moment behavior. At » = —1, the fragmentation function
coincides with that for a scalar diquark with an accuracy up to
the spin factor 1/3:

822 |R(O0)|” 22(1 - 2)?

DE) =530 W (1)

x [3+3r% = (6— 10r +2r* +2r)z

+ (3 —10r + 14r* — 10" + 3r*)2?] (4.17)
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Figure 15. Fragmentation function of a diquark into a heavy baryon for
r=0.02; the dashed line represents x = —1, the sg)lid line 1+x=
3IM? /(s — Mjiq), and the factor N = (802/243m)|R(0)|"/[M3r*(1 — r)?].

which tends toward

~ 8.2
D(y) .

RO (v —1)?

= 8 + 4y + 3y?
2431° 3 (B+4y+3y7),

(4.18)

asr—Oandy = [1 — (1 —r)z]/(rz).

The limit D(y) is in agreement with the general analysis of
the expansion in 1/m for the fragmentation function [60], and
here

D)=+ aly) + ().

We note that in this situation the dependence upon y turned
out to be the same as for fragmentation of a heavy quark into
quarkonium [59].

The case when 1 +x = AM?/(s — Mfiq) has been dealt
with in Ref. [61]. The perturbative fragmentation functions in
the leading order in o5 are shown in Fig. 15. They represent
quite hard distributions that become softer with due account
of evolution (see Ref. [57]).

4.2.2 Transverse baryon momentum. In the system of a
diquark undergoing fragmentation and exhibiting an infi-
nitely large momentum, its invariant mass is expressed via the
fraction of the longitudinal baryon momentum, z, and the
transverse baryon momentum p,; with respect to the
fragmentation axis:

M? 2

Ag2 2

s—MdqurZ(l _Z){[l —(1 fr)z} +t },

where = p, /M. Calculation of the diagram depicted in
Fig. 14 give the double distribution for the fragmentation
probability:

d’p
dsdz D),
with the function (x = —1)

25602 |R(0)| M3

D(z,5) = 252 2 2 4
8lm rir® (1 —r2)"(s — Mg,)
—- M2
X {r?z AL — 2(1 4 4r — )] S d e
2
s — Mg

D/N,
3000
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Figure 16. Distribution over transverse momentum with respect to the axis
of diquark fragmentation into a heavy baryon for r = 0.02: dashed line —
%= —1, and solid line — 143 =3M?/(s — Maiq); the factor N =
(822 /81m)| R(0)|*/ [M*r2(1 — r)7].

It is readily seen that the transverse momentum distribution
can be obtained by integration over z:

D(t)=| dzD(z,s)

! 2M?t
Jo z(l-2)"
As a result we obtain quite a cumbersome expression which is
presented in Appendix 7.2. The typical shape of baryon
transverse momentum distributions with respect to the
diquark fragmentation axis is displayed in Fig. 16.

4.2.3 Hard gluon emission. The one-loop contribution of hard
gluon emission can be calculated by the same method as in
Section 4.2.1. The probability of the process turns out to be
independent of the anomalous magnetic moment and there-
fore the splitting kernel for the vector diquark coincides with
the splitting kernel for a scalar diquark:

dog(u) [ 2x
REN B e

Piiq— diq(X, 1) = (4.20)

where the subscript ‘+’ indicates standard action

1 1
[ dx f, (x) g(x) = L dx £(x) [g(x) — g(1)] -

0

The splitting function can be compared with the similar
function for a heavy quark:

_ da(w) [1+_xz} ’

PQ*’Q(XMM) 37[ l—x

which has the same normalizing factor as x — 1.

Further, multiplying the evolution equation by z” and
integrating over z, it is possible to obtain from Eqn (4.13) by
the renormgroup method the u-dependence of moments a,)
for the fragmentation function in the one-loop approxima-
tion:

aa(,,) _

dlnpg  3m +

PR

() T1 |
8as (1) {—Jr }a(n), n=1. (4.21)

When n = 0, the right-hand part in Eqn (4.21) is zero. This
means that the integral probability for the diquark to undergo
fragmentation into a heavy baryon remains unchanged in the
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course of evolution and is determined by the initial fragmen-
tation function calculated above in QCD perturbation theory
[57].

The solution of equation (4.21) assumes the form

a) (1) = ag) (o) [ s (1) ]%[%+,,,+ﬁ}

(1) , (4.22)

where the one-loop expression is used for the QCD coupling
constant:

21

W) = i (a/ Agen)

with ff, = 11 — 2n¢/3, and ns being the number of flavors of
quarks with m, < u < Mygjq.

Relation (4.22) is universal, because it is independent of
whether the diquark is free or bound with virtualities smaller
than p,. If, when fragmentation into a heavy baryon takes
place, evolution is taken into account, then the diquark may
lose about 20% of its momentum before hadronization [57].

4.2.4 Integral fragmentation probabilities. As was noted
above, evolution conserves the integral fragmentation prob-
ability which can be computed analytically:

82 |R(0)|”
szD(z) =3n l6mé w(r), (4.23)
so, when ¥ = —1, we have
16
w(r) = ———[(8 + 15r — 60> + 100r* — 60r* — 3r7)
15(1 —r)

+30r(1 —r+7* +7)Inr]. (4.24)

The function w(r) is plotted in Fig. 17 for two choices of x and
small r.

Thus, we have considered the dominant production
mechanism for spin-1/2 bound states of the vector local
color field (for example, a diquark) with a heavy antiquark
in high-energy processes with large transverse momenta,
where the role of the leading term is assumed by the
contribution due to fragmentation. We have discussed two
cases of the anomalous magnetic moment behavior. At
» = —1, the fragmentation function differs only by a numer-

w(r)
0.55

0.50

0.45

0.40

0.35

Figure 17. Function w for vector diquark fragmentation into a heavy
baryon vs. the ratio r = mg/M: dashed line — »% = —1, and solid line —
Lo =3M2/(s — Mg,).

ical factor from the corresponding function for fragmentation
of a scalar colored particle into a bound state with a heavy
antiquark. (For other values of the constant anomalous
magnetic moment the integral in the expression for the
fragmentation function diverges.) In the limit of an infinitely
heavy diquark, the function D(z) assumes a form consistent
with what is expected from the general study of the 1/m-
expansion for the fragmentation function.

The distributions over baryon transverse momentum with
respect to the diquark fragmentation axis have also been
computed in the leading order of QCD perturbation theory.
The corrections from hard gluons that are due to vector
diquark splitting can be taken into account perturbatively,
which leads to the corresponding one-loop equations for the
moments of the fragmentation function [see Eqns (4.21) and
4.22)].

Numerical estimates reveal that the probability of
fragmentation into bound states of a heavy vector diquark
with a mass between 3 and 10 GeV depends on the choice of
effective mass for the quark present in the baryon. In this case,
the ratio of the yields of baryons with and without strangeness
amounts to ¢[Qpo]/d[Ege'] ~ 0.2. Doubtless, when light
and strange quarks are also considered, the estimates made
cannot be rigorously substantiated, since they assume the
constituent masses to lead to an effective description of the
dominant contributions from infrared dynamics. One can,
however, make use of perturbative expressions as models for
fragmentation into hadrons containing light and strange
quarks, since in such processes the ‘fast’ valence degrees of
freedom in the baryon can be, in the approximation of small
dispersion, reliably approximated by the ratio between
fractions of the longitudinal parton moment in the hadron,
and one may not consider the contribution from the soft sea
of light quarks and gluons.

Another approach to the fragmentation production
mechanism of doubly heavy baryons was applied in works
[62], in which the perturbative form factor of a doubly heavy
diquark and of a heavy—light diquark was computed along
with the fragmentation function of a heavy quark into a
baryon due to pair production of vector diquarks:
0 — Ego' + (Q_’E])diq. Such estimates exhibit the character
of a lower limit, since they are based on the elastic diquark
form factor. The hierarchy of interaction scales,
mg > mov > Aqcp, also implies that upon hard production
of a heavy quark (m,) the rapid formation of a doubly heavy
diquark (mguv) first takes place and then the less rapid
diquark hadronization into a baryon (Aqcp)-

In Ref. [63], a comparative analysis has also been made of
fragmentation into the triply charmed Q.. baryon via the
cascade process involving transformations of quark into
diquark and diquark into baryon, as well as via the process
of quark transformation into baryon owing to elastic
production of a vector diquark. Regretfully, the main
conclusion of Ref. [63] concerning the noticeable dominance
of direct fragmentation over cascade one is not correct. First,
using the elastic form factor of the vector diquark in the
cascade process leads to the fusion factor of charmed quarks
into a diquark being taken into account twice: in the quark
fragmentation into a diquark, and in the elastic form factor
where, also, the projection of the incoming quark state onto
the bound diquark is taken. This gives a ‘superfluous’
smallness factor ocsz}'I’CC(O)|2 ~ 1073, Second, the idea of the
formation of a cc diquark with subsequent hard production of
a charmed quark on the diquark is certainly not correct, since
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the diquark formation time is significantly longer than the
production time of the charmed quark.

4.3. Hadron production

Recent years have witnessed a rapid growth of the number of
charmed particles registered in modern experiments. At the
FNAL ES831 and E781 fixed-target facilities, studies of the
order of 10° events with charmed particles are to be expected.
In experiments of the next generation this number is expected
to be increased by more than two orders of magnitude.
Besides the standard problems of CP-violation in the sector
of charmed quarks, measurements of rare decays, etc., the
investigation of processes involving the production of more
than one pair of ¢ quarks becomes urgent. The production of
an additional cc pair significantly reduces the cross section of
such a process, which is especially important to take into
account in fixed-target experiments where quark —parton
luminosities are strongly suppressed in the region of heavy
mass production.

One of the interesting processes is the production of
doubly charmed baryons. The EC(C* ) baryon represents a
totally new object as compared with ordinary hadrons
composed of light quarks. The ground state of such a baryon
is similar to that of the Qg meson, in which one of the quarks
is heavy, and the other light. The role of the heavy quark in
the ccq baryon is assumed by the heavy cc diquark [64], which
is in an antitriplet color state and is small in size compared to
the scale of light quark confinement. Investigation of the ccq
states is interesting from the point of view of understanding
their production mechanism. Production of the ccq baryon
has been considered in a series of publications [50, 54, 55, 65,
66]. The main task of calculating the production cross section
of this baryon reduces to evaluating the production cross
section of the cc diquark in the 3-plet color state. Such a
diquark is assumed to transform nonperturbatively into a ccq
baryon with unit probability.

Hadron production of a diquark proceeds in two stages.
The first stage corresponds to hard production of two cc pairs
in the processes gg — cccC, qq¢ — cccc and is described by
fourth-order diagrams in ag in QCD perturbation theory
(Fig. 18). The second stage corresponds to the nonperturba-

gg — (cc

W
e

qq — (cc)3 + X

J2 o

Figure 18. Diagrams of gluon — gluon and quark — antiquark production of
a cc diquark. The solid lines with arrows indicate quarks, and the spiral
lines indicate gluons.

tive fusion of two ¢ quarks with small relative momenta into
the cc diquark, which is described by the diquark wave
function at the origin of the reference frame, R(0), in the
case of S-wave states.

The main distinction in existing estimates of the yield of
doubly charmed baryons consists in the differing approaches
to calculating the hard production cross section of the
diquark. Thus, in Ref. [67], instead of taking into account
the complete set of fourth-order diagrams, only those
responsible for fragmentation of a ¢ quark into a cc diquark
were used. As is shown by Berezhnoy et al. [65], such an
approximation is not quite correct, since it is valid only in the
case of large transverse momenta (p " > 35 GeV), where the
production mechanism enters the fragmentation mode.
Application of the fragmentation approximation is not
justified within the remaining region of kinematic variables,
and it leads to erroneous results, especially in conditions when
the energy V/5 is low compared to pmin,

But even if the complete set of diagrams is taken into
account, like in Refs [65, 66], a significant uncertainty remains
in the estimate of the ccg-baryon yield. The main parameters
affecting this uncertainty in the cc diquark production model
are the quantities o, m. and R.(0). Besides this, it remains
unclear how valid the hypothesis of unit hadronization
probability of the cc diquark into a ccq baryon is, since
diquark interaction with gluons is not suppressed, like, for
example, in the case of quark —antiquark cc pair production
in a colorless state, when the quarkonium dissociation implies
exchange with the quark—gluon sea by at least two hard
gluons with greater virtualities than the inverse size of
quarkonium.

It is possible to reduce the uncertainties in cross section
estimates by comparing ccq baryon production with a similar
process — production of the J/\ particle accompanied by a
cc pair that is described by practically the same fourth-order
diagrams with the J/{-particle wave function known at zero
point 4. Thus, by reference to the J/{ + DD production
process it is possible to remove part of the uncertainties in
the cc diquark production process, which are due to
variations in o and mi.

Further in this section combined estimates are presented
for the cross sections of these processes at =~ p and pp
collisions, a model for ccq baryon and J/{ + DD produc-
tions is described, the ccq and J/\y 4+ DD production cross
sections are calculated for the conditions of fixed-target
experiments (E781, HERA-B) and at collider energies
(Tevatron, FNAL, LHC), and, finally, various feasible
versions are discussed of searches for £ baryons.

4.3.1 Production mechanism. As already mentioned above,
diquark production proceeds via two stages. First, the
production cross section is calculated of four free quarks in
the subprocesses

g8 — ccce, qq — cccc .

The computational technique applied in the present review is
similar to the technique for calculating the hadron production
of B.-mesons [53, 68], but in this case, instead of a quark and
antiquark, a bound state is formed by two quarks: Q, and Q»
[54, 55, 65].

14 The quantity | Ry (0)| is given by the J/{ — 11~ lepton decay width with
due account of the hard gluon correction, so that numerically |R,j,(0)‘ =

/TM/3 fy, where f;, = 540 MeV.
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The diquark binding energy is much smaller than the
constituent quark masses, so they are on the mass surface and
their 4-momenta are related to the 4-momentum Pgy;q of the
diquark Q;0;:

m

1
Pt =-—— Piq, m
Maiq a

ny
= My Puiq (4.25)
where Mgiq = m; + my is the diquark mass, m; and m; are the
quark masses.

Within such an approach diquark production can be
described with the aid of 36 Feynman diagrams correspond-
ing to the production of four free quarks, by combining two
quarks into an antitriplet color diquark with definite
quantum numbers. This is done through the agency of
projection operators:

2-/\/ldiq
2}’1/11 21’7[2

12 4
N(0,0) = ( ) 7 {a\(p1,+) (P2, —)

— i (pr,—)ia(pa2, +)} (4.26)

for the scalar diquark states — the Z/,,, (J = 1/2) baryon,
and

2Mi 1/2
N(L_l): (ﬁ) al(pla_)ﬁ2(p2:_)a
2 Mg 172 1 _
./\/(1,0) = <W2d}’}jz) % {ul(pl7+) u2(p27 7)

+ i1 (p1, =) i (pa, )} (4.27)

Mg\ _
W Ul(ﬁla+)U2(P27+)

N(1,+1) = <
for the vector diquark states — the Zgo' (J =1/2) and
Epo' (/ =3/2) baryons. For the quarks composing the
diquark to be produced in the 3.-state, it is necessary for the
diquark production vertex to include the color wave function
&ijk/ V2, where i and j are color indices of the first and second
heavy quarks. For identical quarks Q; = Q, with equal
momenta, an antisymmetrized state can exist only with spin
S=1

The diquark production amplitude A,f* is expressed via
the amplitudes T,f“':( pi) of free quark production in the
kinematics (4.25) with substitution of projection operators
for the product #i, and under the condition that the two
heavy quarks are in the color state 3:

. Ryig(0 .
A]fj‘_ _ q( ) Tkss'(pi)7

N (4.28)

where Rgiq(0) is the diquark radial wave function at zero
point, k is the color state of the diquark, S and s, are the total
diquark spin and its projection, respectively.

The following parameters were adopted in calculations:

2 =02, me=17GeV, my=49GeV,

(4.29)

Re(15)(0) = 0.601 GeV*2 | Rye15)(0) = 0.714 GeV /2.

The quantities Rgiq(0) were evaluated when solving the
Schrédinger equation with the Martin potential multiplied

by a factor of 1/2 that corresponds to the quark antitriplet
color state. In calculating production cross sections for a

diquark consisting of two ¢ quarks it is necessary to take into
account their being identical. It is easy to understand that this
circumstance leads to the scalar diquark production ampli-
tude becoming zero, while the vector cc-diquark production
amplitude can be obtained by substitution of equal masses
into the production amplitude of the vector heavy diquark
with quarks of different flavors and taking into account the
factor 1/2 for identical quarks and antiquarks. In this
approach the diquark is considered to form a baryon with
unit probability, i.e. it picks up a light quark from the quark —
antiquark sea at low p, or undergoes fragmentation into a
baryon at high p, .

Typical fourth-order diagrams describing parton subpro-
cesses are presented in Fig. 18. They can be divided into two
groups: the first corresponds to the fragmentation type
diagrams in which the cc pair produced subsequently emits
an additional cc pair, while the second corresponds to
independent gluon dissociation into cc pairs with subsequent
recombination into a diquark. We shall term the second
group recombination type diagrams.

The authors of some publications (see, e.g., Ref. [67])
restricted themselves to considering fragmentation type
diagrams alone, reducing the expression for the cross section
to the product of the Cc-pair production cross section and the
quark fragmentation function into a cc diquark. As is shown
in Ref. [65], such an approximation is valid when two
conditions are satisfied: M(fiq <58 and p; » Mgq. In the
remaining region of kinematic variables the contribution of
recombination diagrams is dominant. A typical transverse
momentum at which the contribution from fragmentation
starts to dominate in the cc diquark production amounts to
p1 > 35 GeV (Fig. 19). Therefore, it is clear that at real p
values it is necessary to take into consideration all contribu-
tions, including those due to recombination.

Such an accounting was first rendered in Ref. [65] and
subsequently confirmed in Ref. [66]. Calculations were
performed only for the case of gluon—gluon production,
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Figure 19. Differential cross section of associated cc diquark production in
the gluon—gluon subprocess at 100 GeV (histogram), compared to the
prediction of the fragmentation model (dashed line).
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which is a good approximation for collider energies. In the
case of fixed-target experiments, the total energy is drastically
reduced and, consequently, the energy in the parton sub-
processes, too. The role of quark—antiquark annihilation
becomes essential, especially in collisions where primary
valence antiquarks exist. In this review calculation is
performed of the contribution of quark —antiquark annihila-
tion to four charmed quarks, which is taken into account in
estimating the doubly charmed baryon yield.

4.3.2 Doubly charmed baryon production in fixed-target
experiments. In Figs 20 and 21, the calculated results are
presented of total cross sections for subprocesses as functions
of the subprocess energy /5 at the above-indicated values of
the parameters o, m. and R.(0). We shall present parame-
trizations for the dependence of the total cc-diquark produc-
tion cross section on the subprocess energy:

56 — 213 (1 - 4m°> v (4’"°) b (4.30)
e \/§ \/5 po, .
18 29
() :206<1 7%) (4&> b. 431
qu \/E \/§ p ( )

It must be noted that the numerical coefficients contain the
model parameters, so that ¢ ~ a|R(0)|*/m.

As already noted, in this review the production of J/\{
particles in subprocesses gg — J/\r + ccand ¢g — J/\ + ccis
computed in parallel. Parametrization of the dependence of
the total J/\-particle production cross section upon the
energy /5 of the subprocess is given by the formulae

4m 3.0 4m 1.45
GV :518(1 ——°> (—C) b, 4.32
A 7 7 P (4.32)
1.9 2.97
I 4mc) <4mt>
6V =699(1—-—= == b. 433
qq < \/§ \/E P ( )

Ggg DD
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Figure 20. Total gluon—gluon production cross sections of cc diquark
(dark triangles) and J/{ + DD (empty triangles), compared to approx-
imations (4.30) and (4.32) (solid and dashed lines, respectively).
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Figure 21. Total quark —antiquark production cross sections of cc diquark
(dark triangles) and J/\y + DD (empty triangles), compared to approx-
imations (4.31) and (4.33) (solid and dashed lines, respectively).

Like in the case of associated B, + b¢ and E.. + cC produc-
tions, the following regularity is observed for the parton
process of J/\ + cc production: the fragmentation mode
occurs at p; > 25—30 GeV, which is clear from Fig.22 for
the differential cross section of the process gg — J/\ + cc at
V§ =100 GeV. Thus, for the associated J/V¥+cc and
E + CC productions, fragmentation ‘works’ at p; > m..
The above-presented parametrizations describe the
results of accurate calculations at v/5 < 150 GeV quite well
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Figure 22. Differential cross section of associated J/\ + cc production in
the gluon—gluon subprocess at 100 GeV (histogram), compared with the
prediction of the fragmentation model (dashed line).
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Figure 23. Total cc-diquark and J/{ + DD production cross sections (solid and dashed lines, respectively) in n~p- and pp-collisions.

and are entirely suitable for approximate estimates of the
total cc-diquark and J /\s-particle production cross section by
convolution with parton distributions:

o::}:demhéﬁmﬂm,MJhAXLu)67 (4.34)

iJj

where f;/4(x, u) is the distribution of the ith parton in the 4
hadron. The distribution function CTEQ4 [69] is adopted for
the proton, and the function Hpdf [70] for the ®~-meson. In
both cases the virtuality scale u was chosen equal to 10 GeV.

Convolutions of cross sections with gluon and quark
luminosities both for the cc diquark and for J/\y-particles
are presented in Fig. 23 for 1~ p- and pp-collisions. As one can
see from the plots, the cc-diquark and J/\{ + cc production
cross sections are strongly suppressed at low energies as
compared with collider energies. While in the latter case the
suppression relative to the total charm production cross
section iS Gec/Gcharm ~ 1074—1073, in fixed-target experi-
ments this factor amounts to a value of the order of
107—1073. The same is true for the associated production
of J/\y + DD-mesons.

Differential ccg-baryon and J /-particle production cross
sections are presented in paper [71] for center-of-mass
energies of 35 and 40 GeV, respectively. The rapidity
distribution reveals the clearly central character of ccg-
baryon and J/\-particle production. The transverse momen-
tum shapes of the differential cross sections are also very
similar to each other for both particles (at low energies the
cc diquark does not undergo fragmentation into a baryon,
but simply picks up a light quark from the sea of quark—
antiquark pairs). Thus, the J/\y 4+ DD production process can
serve for normalization in estimating ccq-baryon yields, in the
calculation of the production cross sections of which there
exist additional uncertainties related to cc-diquark hadroni-
zation and to the unknown quantity |Rec(0) }2.

From the above-presented estimates it is seen that in
experiments, where the expected number of events with
charm should be at a level of 10° (for example, in the E781
experiment, when the value /s = 35 GeV) about one event is

to be expected with a Z*) baryon. The situation seems more
favorable in the case of pp-collisions at 800 GeV (HERA-B).
Here, in the conditions of an experiment aimed at observing
108 events with b quarks, the processes considered provide a
yield of the order of 10° Ec(: ) baryons and approximately the
same number of events with associated J/{ + DD produc-
tion.

4.3.3 The production of =, baryons at colliders. The discussion
in Section 4.3.2 revealed that observation of the £ baryon
in dedicated experiments aimed at the investigation of
charmed particles represents quite a complicated task. As a
rule, these are fixed-target experiments, which essentially
reduces the effective energy for subprocesses: the relative
yield of doubly charmed baryons in these experiments with
respect to the charmed particle production cross section is at
the level of 107°—107>. The production of ccq baryons at
colliders turns out to exhibit higher intensities at large p, . In
this case the cross section accumulates in the region of such
energies of gluon—gluon and quark—antiquark subpro-
cesses, where the threshold effect already becomes insignif-
icant and parton luminosities at x ~ M /./s are quite high, so
that the suppression factor with respect to single cc-pair
production is much smaller and amounts to 10~4—1073. In
Ref. [71], p. distributions are presented for EC(C’*) baryons and
for J/y-particles, summed over rapidity at |y| < 1 for the
Tevatron and LHC colliders.

It is easy to understand that the cross sections given here
represent an upper estimate of the EC(C*)-baryon production
cross section, since the heavy diquark may dissociate into a
pair of D-mesons. Even if the colored object, such as the
cc diquark, hadronizes with unit probability, it is necessary to
introduce the fragmentation function that describes how it is
dressed by a light meson at sufficiently high p, . The simplest
form of such a function can be chosen by analogy with
fragmentation of a heavy quark:

1 M2 m2 \ 2
D@»{M%j#qjg7

z

(4.35)
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where M is the E; baryon mass, Mgiq is the diquark mass,
and m, is the hght quark mass (we assume it equal to
300 MeV). The fragmentation function (4.35) actually
repeats the form of the doubly heavy diquark fragmentation
function into a baryon, computed above within the frame-
work of QCD perturbation theory.

In Ref. [71], the distributions are presented for the hadron
production of doubly charmed baryons with due regard for
fragmentation in accordance with Eqn (4.35). It must be
noted that the relative yield of E. and EJ in the leading
approximation in the inverse heavy quark mass is determined
by the simple counting rule of spin states, so the
0[Bcc] /0[] = 1/2. Here, the possible distinction in form of
the fragmentation functions for baryons of different spins is
not taken into account, unlike the case of perturbative
fragmentation functions for heavy mesons and for quarko-
nia [51, 59].

4.3.4 Hadron production of =, baryons. In Fig. 24, the energy
dependence of the total cross section for the gluon production

of E{, and Ht()c baryons is presented. For comparison, the
predictions of the fragmentation mechanism are also pre-
sented. From the figure it is seen that the fragmentation
production mechanism assuming factorization of the cross
section to be possible for M?/s < 1 by the formula

)be] = algg — bb] D[b — EL(EL)](2)
(4.36)

d
@« olgg — S (B!

at z = 2|p|/+/s does not work not only at low gluon energies,
where it overestimates the cross section owing to erroneous
estimation of phase-space volume (the two- instead of three-
particle threshold), but also at high energies, where the
predictions of the fragmentation mechanism turn out to be

10

b
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Figure 24. Total gluon—gluon production cross sections of &y (empty
circles) and E _bc (dark circles) baryons, comg)ared to predictions of the
fragmentation mechanism for Z{, and Z,;’ (dashed and solid lines,

respectively).
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Figure 25. Transverse momentum distribution for the gluon production of
g, and _‘é baryons (dashed and solid lines, respectively), compared to
the fragmentation approximation at an interaction energy of 100 GeV.
The total and fragmentation responses are represented by the histograms
and the smooth curves, respectively.

significantly lower than the exact count. Thus, at
V§ =100 GeV, the fragmentation mechanism underesti-
mates the total cross section by a factor of 10 for :é*), and
of 3 for E.. Whlle in accordance with fragmentation
predictions, o[_bc ]/o[_bc] 1.4, the exact count of the
complete set of diagrams in the glven order in the QCD
coupling constant shows that a[ubc 1/0El.] & 3.5 even at
V5 =100 GeV.

Agreement with the fragmentation mechanism at
V5 =100 GeV occurs at large transverse baryon momenta
which is seen from the p, distributions for Eéz) and Ey .,
presented in Fig. 25. We note that, unlike the case of baryon
production, in the gluon production of B.- and B}-mesons at
p1 > 35 GeV and energy of 100 GeV better agreement is
observed of the total count and the fragmentation prediction,
like for doubly charmed baryons. In the case of Ey,. baryons,
divergence is observed up to the highest p, values, although,
probably, at a higher energy of the gluon—gluon subprocess
the region of applicability of the fragmentation mode extends
towards larger transverse momenta.

In Ref. [71], the differential cross section dg/dp, is
presented for E/ and Egz) baryon production in pp-
interaction at the energy /s = 1.8 TeV in comparison with
the fragmentation mechanism, from which the conclusion
can be made that the fragmentation approach provides a
very rough estimate for the yield and momentum spectrum
of Ep. baryons. For the chosen parameters and with
account of the cut-offs in transverse momentum and
rapidity (p. > 5 GeV, |y| < 1), we estimate the production
cross section of bcg baryons in S-states and their anti-
particles as oy, = 1 nb (without cut-offs the cross section
Obeq 1S about two times larger). By completion of Run Ib at
the Tevatron with a total accumulated luminosity of 100—
150 pb~! this corresponds to (1.0—1.5) x 103 events with
the production of a bcg baryon.
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4.3.5 Pair production of baryons with two heavy quarks. At the
energies of fixed-target experiments, the luminosity of parton
subprocesses with valence quarks is not inferior to the
luminosity of gluon—gluon collisions in the region of large
invariant masses. Here, a noticeable fraction of the total
production cross section of baryons with two heavy quarks is
due to the baryon pair production.

Total and differential cross sections of baryon pair
production were considered in Ref. [56], where the contribu-
tions from scalar and axial-vector diquarks were taken into
account. Thus, the expression for the total production cross
section of scalar pairs, depending on the square of the total
energy s, has the form

813 4 4M\3?
000:@“’@(0)\ (1— P )

16, - 1/ 4M?\ -
x {§( 0)’ T (1 *T> (fo%])z] :

Here, P 4iq(0) is the diquark wave function at zero point, while
the form factors are determined by the functions

. 11\ 2Mm?
7 = m2d (o) -2 (2B )] )

(4.37)
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where m; and m, are the heavy quark masses, and
M = my + m;. Numerical estimates reveal the pair produc-
tion of vector diquarks to be predominant and amount to
about 10% of the yield of single doubly heavy baryon
production in the cross section of the parton subprocess.

4.3.6 Discussion. On the basis of perturbative calculations of
the hard production of a heavy doubly charmed diquark
undergoing fragmentation into a baryon we have shown that
the observation of £{) baryons in hadron collisions is not a
simple task, since the yield of baryons relative to the
production cross section of charmed particles amounts to
0[2)]/0eharm ~ 1076 =103, depending on the total energy
of the process. Suppression of the yield is attributed to the
strong threshold effect at the energies of fixed-target experi-
ments.

Calculations of the total cross section for the experiment
at the HERA-B facility give

0[Ee] 2 x 1073 nb,

in the E781 experiment
0[Eec] = 4.6 x 1073 nb,
while at the Tevatron collider
0[] = 12 nb,
and, finally, at LHC

0[2e] = 122 nb.

The small production cross section of doubly charmed
baryons in fixed-target experiments permits one to expect the

number of events (involving baryon production) to be of the
order of 10° at HERA-B. With due regard for the cut-offs in
transverse momentum and rapidity (p; > 5 GeV, |y| < 1) at
the Tevatron for an integral luminosity of 100 pb~! the yield
of 2 baryons is at the same level as at HERA-B. In
experiments at LHC, the larger luminosity and energy permit
one to expect a 10*-fold increase of the yield of the baryons
considered. With due account of the luminosity enhancement
of the hadron collider at FNAL, the experimental task of
registering Ey. and E.. baryons becomes feasible.

Given a sufficiently large yield of Ec<c*) baryons, the
question arises as to how they can be observed. First of all,
it is interesting to obtain estimates for the ground state
lifetimes of ES" and E}. Simple examination of quark
diagrams reveals that, like in the D™ -meson decays, in decays
of the " baryon the Pauli interference effect exists for the
decay products of the charmed quark with a valence quark in
the initial state. In decays of the 2 baryon there should be a
manifestation of the W-boson exchange between the valence
quarks, like in decays of the D°-meson. Therefore, the
mechanisms indicated >, most likely, result in the same
relation for the baryon lifetimes as for the respective
D-mesons:

t[Ef] ~ 0.47[E1T].

The presence of two charmed quarks in the initial state clearly
leads to the relations

t[EF] ~ 0.5¢[D*] &~ 0.53 ps,

1[ES] 2~ 0.5¢[D°] ~ 0.21 ps.

By analogy with the decays of a baryon with a single
charmed quark it is possible to single out the following among
the decay modes:

Br (55" — KYOZH0)] & Br [B — K25+ A7)
~ Br[Ac = KWp] ~ 4 x 1072,

In such modes without regard for the decay reconstruction
efficiency of the device it is possible to observe about 4 x 103
events at HERA-B and at the Tevatron. The yield to be
expected at LHC amounts to 4 x 107 decays. We also note the
processes 2.7 — n*E and Ef — n"E? with relative prob-
abilities close to 1%. Excited Z, states decay into E. owing
to the emission of a photon, and the branching ratio of this
transition is 100%, since, unlike decays of the D*-meson, the
emission of m-mesons is impossible owing to the small
splitting between the ground and excited states.

In conclusion we shall point out one more possibility for
enhancing the yield of doubly charmed baryons in fixed-
target experiments. The intrinsic charm model [72] assumes
that, besides the usual state |uud) of the proton with three
light valence quarks, it also contains a nonperturbative
admixture of an exotic hybrid state |ccuud), the probability
P;. of which is suppressed at the level of 1%. The charmed
valence quark from such a state can undergo recombination
with the newly produced c¢ quark in the hard parton
subprocess of cc-pair production. The energy dependence of

15 Here, naive estimates of lifetimes are presented; a rigorous examination
of the operator expansion for inclusive decays of doubly heavy baryons is
performed in Section 5.
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the production cross section of a doubly charmed baryon
repeats the energy dependence of single charm production in
QCD perturbation theory with an accuracy up to suppression
factors of the exotic state and of fusion of charmed quark
pairs into a diquark (K =~ 0.1).

Such a mechanism of £()-baryon production exhibits no
production threshold for the four-quark state cccc, like the
one occurring in the perturbative production dealt with above
of the doubly charmed diquark. Therefore, at low energies in
fixed-target experiments, where threshold suppression of the
perturbative mechanism is great, the intrinsic charm model
could provide the dominant contribution to E{)-baryon
production at the level of J[EC(: )]/ Gecharm ~ 1073, i.e. the yield
of baryons in this model is enhanced by three orders of
magnitude. At high energies perturbative EC<C* ) production is
comparable with the contribution of intrinsic charm. We also
note that the nonperturbative exotic seven-quark state
|ccccuud) suppressed at the level of 3 x 107* could also
enhance the yield of doubly charmed baryons in hadron—
hadron collisions at low energies.

Thus, observation of Z() baryons in hadron interac-
tions seems quite a feasible task that opens up new
possibilities in examining the interactions of heavy quarks.
Investigation of EC(C*)-baryon production at the energies of
fixed-target experiments [73] would permit one to study the
production mechanism and to reveal the role of various
contributions, including perturbative production and intrin-
sic charm that essentially increase the baryon production
cross section.

5. Lifetimes and decays of Egp/ baryons

Within the framework of the operator expansion in terms of
the inverse heavy quark mass, new quite definite schemes
have been developed for taking QCD effects into account
consistently in calculating various characteristics of hadrons
containing heavy quarks [9, 10, 74]. This permits one, on the
basis of predictions of such a method, to single out the
parameters of the electroweak interaction of heavy quarks
against the background of the dynamics of strong interactions
of quarks and gluons composing the hadrons observed in
experiments. The accuracy of the QCD description in the
sector of heavy quarks is extremely important for revealing
subtle effects such as the violation of CP-invariance, devia-
tions from predictions of the Standard Model, and clarifica-
tion of the mechanisms of influencing the virtual corrections
of the ‘new’ physics with characteristic scales exceeding
teraelectron-volt energies. Therefore, studying the properties
of operator expansion in the inverse heavy quark mass seems
to be quite an informative problem that deserves all possible
attention. Of particular interest is the complex investigation
of various systems with heavy quarks, making use of
comparative analysis of various characteristics: convergence
of the expansion in the inverse mass and in the QCD coupling
constant, the relative and absolute values of various contribu-
tions and their dependences on the system composition,
qualitative inferences about the influence of various mechan-
isms [75] and the uncertainties of quantitative estimates.

The efficiency of this approach has been convincingly
demonstrated in the description of weak decays of hadrons
with one heavy quark within the framework of HQET [9], in
the annihilation and radiative decays of heavy quarkonia QQ
containing heavy quarks of the same flavor within the
framework of NRQCD [10], and in weak decays of the long-

lived heavy B} quarkonium of mixed flavor'® [74]. Here it
must be noted that experimental data on the weak decays of
hadrons with two heavy quarks are capable of introducing a
significant quantitative certainty into the parameters describ-
ing systems with heavy quarks. This is due to the presence in
NRQCD (as compared with HQET) of an additional
parameter of smallness: the relative velocity of motion of the
heavy quarks, v. Besides, there exists a significant variety of
characteristics of bound states of heavy quarks in various
hadrons, which permits one to study the dependence of the
operator expansion on nonperturbative parameters that can
be simulated, for instance, within potential quark
approaches.

Fresh opportunities for the description of systems with
heavy quarks have been opened up due to baryons with two
heavy quarks, QQ’q, for which it is possible to apply a
combined approach based on HQET and NRQCD [9, 10,
74], if the quark —diquark picture of such a bound state is
adopted. Then, expansion in the inverse mass of the heavy
quark serves for the heavy diquark QQ' as a direct general-
ization of the NRQCD technique [10, 74] from singlet to
antitriplet color systems, taking into account the interaction
of the diquark with the light quark, for which the HQET
methods are assumed to work reliably.

In this section a consistent procedure is presented for
calculating the lifetimes of the doubly heavy baryons !, A
B, and EL". Here, in developing the computing method we
follow Refs [6, 74] with due regard for the necessary general-
izations to the case of hadrons with two heavy quarks and
with the introduction of a series of corrections. Such
calculations are based on the optical theorem for the
inclusive decay width, on the operator expansion and
passage to nonrelativistic quark fields in the hadron matrix
elements. First, in the operator expansion, owing to the
presence of heavy quarks in the initial state, the energy
released in each of their decays is, generally speaking, large
compared to the energy of the bound state, so it is possible to
apply expansion with respect to the scale ratios. Technically,
this repeats the procedure for the inclusive decays of heavy —
light mesons, a review of which can be found in Ref. [76].
Second, the nonrelativistic QCD approximation [10] permits
one to reduce the calculation of the matrix elements of
operators, responsible for the interaction of heavy quarks in
the diquark, to a series expansion in powers of p./m., where
Pe = meue ~ 1 GeV represents the typical momentum of the
heavy quark in the baryon. The same procedure for operator
matrix elements responsible for the interaction of heavy
quarks with the light one leads to an expansion in powers of
AQCD/I’HC.

It must be noted that in the leading approximation of the
operator expansion the inclusive widths are determined by the
mechanism of spectator decays of free quarks, for which
corrections are taken into account by proceeding on QCD
perturbation theory. Inclusion of subsequent terms of the
series expansion in the inverse mass of the heavy quark !’
enables one to examine the contributions due to quark
confinement inside the hadron. Here, the following nonper-
turbative characteristics of concrete quark systems start to

16 The first experimental observation of the B.-meson was announced in
the work of the CDF collaboration [5], and a review of the theoretical
status of the B.-meson is to be found in Ref. [4].

17 As is shown in Ref. [76], there is no term linear in 1/mg, and the
corrections start from the second order.
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play an essential role: the motion of the heavy quark inside the
hadron and the ensuing time dilation in the hadron rest frame,
as compared to the quark proper time, and the influence of
the chromomagnetic interaction of quarks. An essential role
for such corrections in baryons with two heavy quarks is
played by the presence of the compact heavy diquark that
determines the largest contributions to the correcting terms.

One more peculiarity consists in the quantitative influence
of the hadron composition on the total lifetimes of baryons
with two heavy quarks, since in the third order in the inverse
mass of the heavy quark two-quark correlations in the total
width are enhanced in the effective Lagrangian owing to the
two-particle phase volume of the intermediate state (see
discussion in Ref. [6]). In this case it is necessary to take into
account the effects of Pauli interference between the decay
products of heavy quarks and quarks in the initial state and of
weak exchanges between the quarks composing the hadron.
Here, corrections related to the masses of light and strange
quarks are dealt with in estimating nonperturbative para-
meters in nonrelativistic models with constituent quarks.
Passage to nonrelativistic heavy quarks is realized with the
use of the effective weak Lagrangian with due account of the
evolution of Wilson coefficients from a scale of the order of
magnitude of the heavy quark masses to energies character-
istic for the quark coupling in the hadron.

In Section 5.1, a general scheme is presented for con-
structing the operator expansion for total widths of baryons
with two heavy quarks with due regard for corrections to the
spectator widths. In Section 5.2, the procedure is considered
for estimation of nonperturbative matrix elements for the
operators of nonrelativistic heavy quarks, taken over the
doubly heavy baryon states. Section 5.3 is devoted to
numerical estimation of the lifetimes of baryons with two
heavy quarks and to the discussion of variously typed
contributions and existing uncertainties. In Section 5.4,
calculation is performed of exclusive decay widths within the
framework of NRQCD sum rules. The results are summar-
ized in Section 5.5.

5.1 Operator expansion for heavy baryons

We shall now proceed to describe the method for calculating
the total lifetime for the example of doubly charmed baryons.
Within the framework of integral quark —hadron duality, the
optical theorem permits one to relate the total decay width I"
of a particle with the imaginary part of the forward scattering
amplitude. For Z;, baryons, where the symbol ‘o’ stands for
the electric charge of the system, it is possible to write down
the following relation

= 57!

riEg

=LTIES).

=cc

(5.1)

The state of Z;, with mass M in the last relation exhibits the
usual relativistic normalization:

(BalBa) =2EV,

cc
and the transition operator 7 is determined by the formula

T =1Im J d*x T{ Herr(x) Herr(0)} . (5.2)

The standard effective Hamiltonian Her in Eqn (5.2), describ-
ing interactions of the initial quarks with the decay products,
for example, for transitions of a ¢ quark into a u quark and

quarks of flavors ¢; » and charge —1/3, has the following
form

Gg ;
Heff = m Vu(n ch]

where V' is the mixing matrix of charged quark currents, and

Oz = [q1a7,(1 = vs5)ep] [i7" (1 = 75)q25) (8up0ys + Gus Oyp)

[Cy(1) O + C_(1) O_] +hec., (53)

the subscripts o and f denote quark color states, the
coefficients

B |:as (MW) :| 6/(33—2n¢)
L= | —

_ |:O(5(MW) :| —12/(33—2ny)
s (1)

O‘s(.“)

b )

and 7y is the number of flavors.

The released energy is significant in decays of heavy
quarks, and it is possible to realize operator expansion of
the transition Hamiltonian (5.3). As a result, there arises a
series of local operators of increasing dimensions, whose
contribution to the decay width I' is suppressed by the
inverse powers of the heavy quark masses. This formalism
has been applied earlier in calculating total lifetimes of
hadrons containing one heavy quark (see monograph [76],
as well as papers [6, 77]). We stress that for doubly heavy
baryons the expansion is performed simultaneously in the
inverse mass of the heavy quark and in the relative velocity of
motion of the heavy quarks in the baryon. This is a
manifestation of the difference from the case of heavy —light
mesons (expansion in Aqcp/m.) and heavy—heavy mesons
[74] (expansion in the relative velocity of motion of the heavy
quark in the hadron, where the nonrelativistic QCD scaling
rules [10] are applied).

In the present review a combined approach is developed in
the case of baryons containing two heavy quarks. Expansion
in the inverse mass leads to the relation

1 , 1
T =Ci(p) EC+W Cy(w) Egom,G“‘c+0<W) . (54

C C

The leading contribution is determined by the operator cc
corresponding to spectator decay of ¢ quarks. Application of
the equations of motion for heavy quarks provides for the
absence in the expansion of 4-dimension operators. There
exists only one operator of dimension 5: Qo = 0g06,,G*' Q.
As is shown below, significant corrections arise owing to
operators of dimension 6: 0292, = OI'qqI"'Q, responsible for
Pauli interference and for electroweak scattering in the case of
ELT and E, respectively, and reinforced by the factor of
two-particle phase volume. The contributions of additional
operators of dimension 6: Qg9 = 00,7, D*G"Q, Qo =
0D,G"T,Q, are not taken into account, since they are
suppressed by the aforementioned smallness of the three-
particle phase volume, and the expansion can be considered
complete only with an accuracy up to 1/m?.

Thus, various terms in the operator expansion can be
represented in the form

TIEL =Tsse+ Topr,

—~cc T[E;} = 7350 + T6,WS .

The first terms in the expressions presented correspond to
taking into account operators of dimensions 3 and 5: O3p and
Oqo, respectively, the second terms correspond to effects of
Pauli interference and of electroweak scattering. In accor-
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dance with Refs [76, 78, 79], the explicit expressions are given
by the formulae

I
7—35c = 2{Fcﬁspcc cc— m_()zc [(2 + KOc)Pl + KZcP2] OGc}a (5'5)

c
2,2
GF mg

I =
¢ = 903

Koe = C2 +2C2, Ky =2(CI-C?).

The factors related to integration over phase space P; are
determined by expressions [76, 80]

Pr=(1-p'  P=(1-y),
where y:msz/mcz. The symbol I'¢ spec in formulae (5.5)
represents the contribution to the total width from the decay
of one of the free c quarks, the explicit expression for which is
given in paper [81]. The quite cumbersome expressions for the
contributions to the inclusive widths of effects due to Pauli
interference and to electroweak scattering are presented in
Appendix 7.3.

Threshold effects related to the b-quark mass and, also, to
the c-quark mass (in the case of Pauli interference and
electroweak scattering) are taken into account in numerical
estimates of the coefficients C. and C_. In the expressions for
C. and C_, the scale u is approximately equal to mi.. In the
case of effects related to Pauli interference and electroweak
scattering the scale in the factor k (see Appendix 7.3) is chosen
so as to achieve agreement between the experimental
difference in the lifetimes of A, E;’, Ef baryons and the
theoretical predictions based on taking into account the
aforementioned effects. This issue is dealt with in detail
below. Naturally, in any case the choice of scales admits
certain variations, and complete clarification of this issue
requires calculations in the next order of perturbation theory.

The contribution from the leading operator c¢c corre-
sponds to the imaginary part of the diagram depicted in
Fig. 26, and it enters into expression (5.5). The coefficient of
¢c can be obtained in a standard way through the projection
of the contribution from the diagram onto the operator cc.
This coefficient gives the expression for the decay probability
of a free quark in the order next to the leading order in QCD
perturbation theory [82—86] and includes effects related to
the mass of the s quark in the final state [86]. To take into
consideration logarithmic effects, it is necessary to know the
Wilson coefficients in the effective Lagrangian with a given
accuracy and the one-gluon corrections to the diagram shown
in Fig. 26. In numerical estimations the expression used for
I'spec includes corrections of the order of magnitude of ocsz in
QCD perturbation theory and a correction due to the nonzero
mass of the s quark in the final state. Cabibbo-suppressed
channels in the decays of ¢ quarks are not considered, since
they are negligible. The cumbersome expression for the
spectator decay of the ¢ quark is presented in the Appendix
to paper [81].

u, 1
c m c

d,v

Figure 26. Spectator contribution to the total decay width of doubly
charmed baryons.

Figure 27. Contribution of Pauli interference of the c-quark decay
products with the valence quark in the initial state in the case of E1*
baryons.

Figure 28. Contribution of the electroweak scattering of valence quarks in
the initial state in the case of . baryons.

Similarly, the contribution of the operator Ogo is
obtained when the external gluon line is attached in all
possible ways to the internal quark lines in the diagram
presented in Fig. 26. The coefficient functions for this
operator are known in the leading logarithmic approxima-
tion. Diagrams for 6-dimension operators are shown in
Figs 27 and 28. Their contributions correspond to effects of
Pauli interference and electroweak scattering. Expressions for
them are known with due regard for the s-quark mass and
logarithmic renormalization of the effective electroweak
Lagrangian in the low-energy region, the form of which is
given in Appendix 7.3.

The following formulae [79] (see, also, Ref. [86]) are used
for calculating the contribution of semilepton modes to the
total decay width of the baryons considered (the electron and
muon channels):

Ig=4I[1-8p+8p’ —p*—12p*Inp
+ E.(5—24p 4 24p* — 8p> + 3p* — 12p°Inp)
+ Ke(—6 + 32p — 24p> — 2p* 4+ 24p% In p)
+ Ge(—2+ 16p — 16p +2p* +24p* Inp)], (5.6)

where
2.2 m5 m2
.= ¢ == E=K
C |VCS| GF 1921'[3 I p mcz I C C + GC I
1 0
K = — 4 Eo 7‘17 D ,1'50 )
=~ gz (B2 6D |25 (0) 5

1 _ h (e
G. = ) <.:§C(v)|c7,gGa/;a /fc1,|.:§c(v)> )
C
and here the spinor ¢, represents the standard field in the
effective theory of heavy quarks:

. iD,y*
= — 1 L
e(x) =exp( 1mcvx)[ + o

}cl,(x) , (5.8)

C

while the symbol D, denotes derivatives with respect to the
coordinates.

A similar scheme for calculating the widths I' of the =,
baryon was developed in Ref. [87]. As a result, the following
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expressions are obtained for the total widths:

7|
T

[1]

o+ =Tss0 + T3sc + Ts m + Ta(,lx);vs ;
O = Taso+ Tase + T+ T s

ﬁ

Here, the first two terms stand for contributions to the
Q-quark decay from the operators of dimensions 3 and 5,
while the subsequent terms are due to the effects of
interference and rescattering of the constituents (see the
explicit form in Ref. [87]).

Computation of the Pauli interference of the decay
products of heavy quarks with quarks in the initial state and
of weak rescattering of the quarks composing the hadron
yields a sum over various decay channels:

TG o =Tirwa+ Tone+ Torant+ ZTPI 19, 5

(2 b
TG h=The+ Toraa+ Toraa T ZTPI Iy (59)
Té,l\%vs =T ws,bu + 7T ws,be»
Tovs = Tws.a + T

6, WS WS, cd WS, be »

where
b

TPI dn — TPLSE (Z, - 0)7 (510)

b _ b _ b
Tprer. = Toi s, = Tprw, (20— 0).

Now, og-corrections to semilepton quark widths are also
considered. Thus, the calculation of the total lifetime of
baryons containing two heavy quarks is reduced to the task
of estimating the matrix elements of operators, which is the
subject of Section 5.2.

5.2 Hadron matrix elements

In accordance with the equations of motion, the matrix
element of the operator QQ can be expanded in a power
series of 1/myg:

1 1
31 \B00/[00IEGe) = 1= 7y

i A e 1
+W<_QQ,|QJGQ|_QQ,>+0<—Mmé). (5.11)

Thus, it is necessary to submit estimates of numerical values
for the following set of operators:

0(iD)*0,

i —

5 00GO,

07,(1 —5)0qy*(1 = ys)q,
07,7509 *(1 — y5)q.,

07,7500 (1 —75)0,
07,(1 —75)007*(1 —5)0..

(5.12)

The first of them corresponds to quark motion within the
hadron and leads to an effect (suppressed by the square of
mass) due to the time dilation in the rest frame of the hadron
as compared with the proper quark time. The second operator
corresponds to switching on the chromomagnetic interaction

of quarks. The subsequent operators depend on four quark
fields and are related to Pauli interference and weak
rescattering.

Further, following the general methods of effective
theories, we introduce the effective field ¥, which in this
case represents the nonrelativistic spinor of the heavy quark;
we take also into account, within the framework of QCD
perturbation theory, contributions with virtualities u for
which mgy > p > mguvg, and, finally, we express nonpertur-
bative effects in the matrix elements via effective nonrelati-
vistic fields. As a result we obtain

_ . 1 . 30
00 =",¥o - 5 P}, (iD)* g + o v}, (iD) ¥
0 0
! S P ) goBY L i oDEY 5.13
— 52 PogoBYo — 5 WogDEY, + .. (5.13)
my my
— + 1
080,,G"Q = ~2¥/,goB¥, — o P gDE¥y + ... (5.14)

Here we have dropped the term ‘I’;gG[E x D]¥ ¢ correspond-
ing to spin—orbit interactions which are equated to zero for
the ground state of the baryons considered. Assuming the
normalization

Jd3x‘l’£¥’Q:Jd3xQTQ, (5.15)
for
0 =exp(-imn) (7). (5.16)
we arrive at
- (1 + (;1222)¢. (5.17)

Let us stress the distinction between describing the
interactions of a heavy quark with a light quark and the
interactions of a heavy quark with a heavy quark. In the
heavy subsystem there exists an additional parameter — the
relative velocity of motion of the quarks, which sets the
energy scale mpv. Therefore, for example, the Darwin term
DE in the heavy subsystem turns out to be of the same order
of smallness in the inverse heavy quark mass as compared
with the chromomagnetic term oB (of the same degree of
smallness in the velocity v). This becomes especially clear if
one makes use of the scaling relationships in nonrelativistic
QCD [10]:

'PQ ~ (vaQ)3/2 )

g|B| ~ mévé ,

ID| ~ mguvg ,

1/2
g~y .

g|E| ~ mguv},

There exists no small parameter of relative velocity for the
interaction of the heavy quark with the light one, so that the
Darwin term is suppressed by an additional factor

k/mQ ~ AQCD/WZQ.

5.2.1E} and " baryons. We shall now proceed to calculate
matrix elements within potential models for a bound state.
We note that the kinetic energy of the heavy quark in the
baryon is composed of two summands: due to the quark
motion inside the diquark, and to the diquark itself. In
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accordance with the phenomenology of potential meson
models in the region of intermediate interquark distances
(0.1 fm < r < 1fm), the mean quark kinetic energy is a
constant quantity independent of the quark composition of
the meson and the quantum numbers of the excitation from
the ground state. Bearing this in mind we denote the mean
kinetic energy of the diquark and the light quark by
T= Mdiqv(fiq /2 4+ mw?/2, and the kinetic energy of motion
of the heavy quarks in the diquark by 7/2=
mevi /2 + mev3 /2 (the coefficient 1/2 takes into account the
fact that the diquark under consideration is in the antisym-
metric color state). Then we find

2 mlT T

(iD) ‘P} >¢:vcz

2Mm2< } 2m2 + memy + 2
5

(5.18)

Making use of the value 7'~ 0.4 GeV, we obtain the estimate
vf = 0.146, where the contribution of the quark motion in the
diquark is dominant.

We now proceed to calculate the matrix element of the
operator corresponding to the interaction of heavy quarks
with the chromomagnetic field of the light quark. To this end
we introduce the following operators

mag,Z4s

i=1

Omag < A[J(J+ 1)

— \7 i
¢ JWG“

— Sdiq(Sdiq + 1) — Sl(Sl + 1)} .

Here, Sgiq is the diquark spin (as was noted, only the vector
state of the cc diquark is not forbidden in the ground state),
S is the spin of the light quark, and J is the total baryon spin.
Since the contributions of both ¢ quarks enter additively into
the total decay width of the baryons under consideration, we
apply the concept of the diquark and substitute the diquark
spin for the sum of the c-quark spins. In the last analysis this
leads to the parametrization adopted above for Op,, and
permits one to relate the matrix element of the operator Opag
to the difference between the masses of the excited and ground
states:

2 — %O
Omangg(M[‘:‘cc}iM)' (519)
The interactions of heavy quarks inside the diquark

determine the chromomagnetic and ‘Darwin’ terms:

1 g2 2

a7 (Sl PlgoBY[EL) =5 [ Paia O)], (5.20)
1 2¢>

57 (Sl PIeDERES) = = [Paa O (5.21)

where ¥4q(0) is the diquark wave function at zero point.
Collecting the results together, we obtain for the matrix
element of the dominant spectator decay operator the
following relations:

(P 1, IMEZ-M
2M<ECOC|CC|E§C> =1- 2 UCZ 3 me
2 2
g 2 g 2
—=— Y4 (0)]” — == [W4iq (0
9ImJ | aia )| 6m? ’ aia )’ +

~1-0.074 — 0.004 — 0.003 — 0.005+... (5.22)

From the last relation it is seen that the largest contribution to
reduction of the decay width is due to the time dilation related
to the motion of a heavy quark in the baryon. For the matrix
element of the operator ¢go,,G*'c we write

1
2Mm?

(E|cgo G c|Eg,)
4 M[EZ] — g? P
< —Wg|q’diq(0)| :

(5.23)

We now proceed to calculate the matrix elements of the
four-quark operators responsible for effects of the Pauli
interference and electroweak scattering. Calculations within
the framework of nonrelativistic QCD give

(@1 =vs)eqy(1 = ys)q) =2mcV =1 (1 - 4S:S,),  (5.24)
(@ vseqy” (1 —95)g) = —4SS,2m V" (5.25)
Here we have introduced V="' = |#,(0) ?, where ¥(0) is the

light quark wave function at zero point in the rest frame of
one of the c quarks. For estimating |‘P1(0)] we take the value
characteristic for D-mesons:

| fl%mlz)

|#1(0) 12m
C

(5.26)

We note that numerical value of “I’I(O)
lepton constant fp = 200 MeV of the charmed meson, is
about two times smaller than the value of the light quark wave
function, calculated in Section 2 within the approximation of
quark —diquark factorization. This is due to the lepton
constants of charmed hadrons acquiring greater corrections
both of the logarithmic type and of power character in the
inverse charmed quark mass. For example, the lepton
constant of the D-meson in potential models is about twice
the value obtained in QCD sum rules taking into account the
aforementioned corrections. Therefore, approximation (5.26)
for the wave function of the light quark in the baryon can be
considered quite justified.

Furthermore, taking into account the fact that the
contributions of both ¢ quarks enter additively into the total
decay width and making use of the diquark concept, in
estimating the matrix elements of operators we substitute
the diquark spin Sgiq for the sum S; + S,. As a result we find

(E&l[era( =ps)e] ("

(1= 75)q] |ES) = 12me|®1(0) [,
(5.27)

(5.28)

“(1—9s5)q] |2 >_8mc}lpl(0)| .

(Be|@vse) [ay

The color antisymmetry of the baryon wave function relates
the baryon matrix elements of operators with various color
summations:

(Be|@Tuer) [ay" (1 = vs)ai] |ES)
= —(E2|@Tu) [@" (1 —vs5)q]|ES.)

where T, is an arbitrary spinor structure. Thus, we have
formally constructed the procedure for estimating matrix
elements resulting from the operator expansion 7 for a
baryon with two identical heavy quarks.
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5.2.2 £, and E baryons. In considering baryons with two
heavy quarks of differing flavors we will underline which
modifications must be made for estimation of hadron matrix
elements of the quark operators, determining the widths of
inclusive decays. In accordance with the quark-—diquark
factorization for kinetic terms we have

1

2Mm 2 —‘bc|lp 'PC|E§C>%UCZ
2m T T
~ il o . (529)
(my + my + me)(my +me)  me(me + my)
1 2
W I—ibc"y lD 'Ilb}i—ibc ~ Uy
my,
2mT T
il Me (5.30)

- (my + my + me)(mp +me)  my(me +myp)
Numerically 7T~ 0.4 GeV, which results in the values of
v2 = 0.195 and vZ = 0.024, where the decisive contribution
is due to motion inside the diquark.

We define the following operators

&8s

Y S S
Onmag am, conG c—t—4Mb bo,,G*'b, (5.31)
A
Omag - m_ [Scl(Scl + 1) - SC(SC + 1) - SI(SI + 1)}
C
A
o [Si(Se1 + 1) = Sp(Sp + 1) = Si(Si + 1), (5.32)

with Sy = Sp + 51, Sat = Sc + 51, Sp and S; are the b- and
c-quark spins, while Sj is the light quark spin. The operator
studied is related to hyperfine splitting in the baryon system
with a vector diquark Sp. = 1:

(S=3/2|Omae|S =3/2) — (S
= (8=3/2|Vi|S=3/2) -

= 1/2[Oma|S = 1/2)
(S=1/2|V|S=1/2),

(5.33)
where S is the total spin of the system.
The spin-dependent perturbation is given by
8 o 8 s 2
Ve == 0 = 0)[". (5.34
"9 e )+ 9 mymy, ) 534

Here Ry(0) is the radial wave function of the quark —diquark
system at zero point. Unlike the diquark system with identical
quarks, this operator is off-diagonal in the basis of S and Sy,..
For calculations we take advantage of the substitutions

|S: She) = Z(_I)S+SI+SC+Sb [(2Sbl + 1)(2Spe + 1)] 1/2
Shi
S Sy Sw )
X {Sc S Sbc }|S7 Sb1>7 (535)

1S: Spe) = S (— 1) HIESE (25 4 1) (28 + 1))

Sel
Sl Sc Scl .
{Sb S Su }|S, Sa) - (5.36)
The result of substitutions gives
., 4 O 2
A5 Ri(0)]", (5.37)

however, for the state with zero heavy diquark spin,
considered below, one obtains

1

W <Egc|0mag E‘ch) =0. (538)

Taking into account the chromomagnetic and Darwin
interactions inside the diquark leads to the formulae

1 — 2 2

37 el PigoBYEL) = — 5 &*[Pag(O) (539)
1 t 2 2

57 (Eoel PISDEYCIES) =3 [ aiq(0)] (5.40)

Similar matrix elements'® for operators with beauty quarks
can be obtained from those presented above by substitution
of the heavy quark masses.
Combining the results we arrive at
g2

2
vt
© 3mbm2’

dlq O)|2

g’ 2

~1—0.097 +0.004 — 0.007 + . .. (5.41)

The dominant part in the corrections is assumed by the term
related to the time dilation due to the quark motion inside the
diquark. Furthermore, for the operator cgo,,G"'c we have

_1 A W=
2Mn12 <='gc|cg0—l”’G/ cl‘:‘bc>
C
4g° ) g2 )
T —3|Paa(0)]" — 3 13}‘1’qu (0)|" ~0.002. (5.42)

Permutations of the quark masses lead to similar expressions
for the operators bb and bgo,,G*"b.

Making use of relations (5.35) and (5.36), we write down
for the baryon ground states:

(Bel [byu(1 = y5)b] [er* (1 = ps)e] |Ee)
= 8(mp + me)|Paia(0)] (5.43)
(Bge|(by,sb) [er (1 = ps5)e] |Ege)
= 6(my + me)|Paig (0

(Boe| [Br,(1 = p5)b] [@* (1 = 75)q] |Eg.)

= 2(my + )| #1(0) |7, (5.45)
(Ee|(bysh) [@y*(1 = 75)q]|Epe) = O, (5.46)
(Bgel [er,(1 = ps)e] [ar* (1 = 75)q] [Bxe)

= 2(me 4+ m)|T1(0)], 5.47)
(Bee| @s) [@" (1 = y5)q]|Exe) = 0. 5.48)

Now we can proceed to deal with numerical estimates of
inclusive widths.

5.3. Numerical estimates

Summing up the various contributions described above we
will estimate the lifetimes of ;" and £ baryons. First of all,
we present the values of the parameters and comment on their

18 The expressions obtained differ from the results for the B.-meson [74] by
the factor 1/2 accounting for the color structure of the state.
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choice:
me=1.6GeV, ms=0.45GeV,
m =030GeV, |Vl =09745,
M[ES] =356 GeV, M[ES]=3.56GeV,  (5.49)
M[EZ] — M[EZ] = 0.1 GeV,
T=04GeV, |Piq(0)]=0.17GeV¥2.

For masses M[E 1], M[E)], and M[E}%] — M[E.], the mean
values available in the scientific literature are given; their
calculation was performed within the potential model for
doubly charmed baryons with a Buchmiiller — Tye potential
[26] and, also, in Refs [29, 32, 33, 38]. For fp, the value given
in Refs [6, 76] was used, while the value of T was set in
accordance with Ref. [88]. The parameter m, corresponded to
the pole mass of the c quark. To determine it, the lifetime and
width of the semilepton D°-meson channel were fitted. Such a
choice of the c-quark mass effectively takes into account the
unknown contributions from higher orders of QCD perturba-
tion theory to the total decay width of the baryons studied.

The renormalization scale is p; =m. in the case
of c-quark decays, and u, = 1.2 GeV in the case of Pauli
interference and electroweak scattering effects. The renorma-
lization scale was obtained by comparison of theoretical
predictions for the differences between the lifetimes of A,
EF, ECO baryons and their experimental findings. We note that
the formulae in Ref. [89] only take into account the effect of
logarithmic renormalization, while the mass corrections
related to the s quark in the final state are omitted. The
dependence of baryon widths on their quark composition is
given by the formulae

AFnl [Ac} - Cd<0d [ACD + Cu<0u [Ac]> y

ATlES] = e(OJES]) + cal Ou[EST) (5.50)
AT[E?] = ¢g{04[E?]) + ¢s(Os[EY]) .
Here the notation was used:
<Oq[XC]> = <XC|Oq|XC>v Oq = (Eyuc)(qy”q)
with ¢ = u,d or s, and
g = Gfi:f {cﬁ +C? +%(4k‘/2 —1)(C? - Ci)] ,
= —% [(a +C)
+%(1 —4k'?)(5C2 + C* — 6c+c_)} . (5.51)
“=- Gfé]:qrcz {(C* —C)’
+%(1 — 4k (5C% + C* + 6C+C,)} :

The mean D-meson mass can be expressed in terms of the
light quark mass ny = A:

2

=m.+m
2me et 1—i_m,:—l—ml

mp = me + A + T=1.98 GeV.

(5.52)

The mass of the s quark is related to n:

ms =my +0.15 GeV. (5.53)

As mentioned above, the spectator decay width of the
c quark, I'c spec, 1S known in the next order after the leading
order of QCD perturbation theory [82—86]. The most
complete computation, including mass effects related to
the s quark in the final state, has been performed in Ref. [86].
We make use of it in our estimation. In the semilepton decay
width one can neglect the masses of the electron and muon in
the final state, which in the given context seems reasonable.
Further, we do not take into consideration the t-lepton mode,
which is significantly suppressed owing to the small phase-
space volume.

Let us analyze the contributions of various baryon decay
channels to the total decay width. From Table 5 it is seen what
a significant role in the decays of doubly charmed baryons is
played by Pauli interference and electroweak scattering
effects. Pauli interference contributes a correction of the
order of 63% in the case of £ baryons, and an electroweak
scattering of about 61% in the case of E. As was already
stressed, these effects occur in various baryons, and they thus
enhance the difference between the lifetimes of the hadrons
studied.

Table 5. Contribution of various modes to the total decay width of doubly
charmed baryons.

Mode or decay ~ Width, ps~!  Branching Branching

mechanism ratio, % ratio, %
(B (B

¢ —sdu 2.648 127 31

c—setv 0.380 18 4.2

PI —1.317 —63 —

WS 5.254 — 60.6

Er-X 2.089 100 —

Efl—-X 8.660 — 100

=cc

We recall that the difference between the lifetimes of D *-
and D%-mesons is mainly explained by the effect of Pauli
interference between the c-quark decay products and the
antiquark in the initial state, whereas in the case of doubly
charmed baryons the clear predominance of electroweak
scattering is seen. This is not surprising, since the formula
for the Pauli interference operator in the case of D-mesons
reproduces the expression for electroweak scattering in the
event of baryons containing a ¢ quark. As a result, for the
total lifetimes of doubly charmed baryons we have

2] =048 ps, t[EL]=0.12ps.

We note that fitting the data on the semilepton decay
widths of D-mesons, on the difference in decay widths for
baryons with charmed quarks, and using the spectroscopic
characteristics (as described in detail above) enables one to
achieve a significant reduction in the variation of model
parameters: the quark masses, the normalization scale for
Wilson coefficients, and the light quark wave function in the
nonrelativistic model. Here, it turns out to be possible to
essentially reduce the uncertainty of theoretical estimates.
Variations of the c-quark mass within the limits 1.6—
1.65 GeV and of the mass difference between the s quark
and the light quark within the limits 0.15—0.2 GeV leads to
the following uncertainties in the lifetimes of the baryons
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studied:

M[ELT]=0.1ps, &[E)]=0.01ps,

and, as is readily seen, the uncertainties in the widths amount
to

SrEf=04ps™, SrES]=09ps'.

Since the width of the 2 baryon is significantly enhanced by
the contribution of electroweak exchange between the
constituent quarks, the relative uncertainty in the estimate
of the baryon lifetime is noticeably lower: 10% as compared
with 20% for E1*.

In calculations of inclusive decay widths of E; and E{,
baryons it is necessary to supplement the set of parameters
with the b-quark mass:

my = me + 3.5 GeV. (5.54)

The mass of the baryons was taken to be 7 GeV. For the wave
function in the diquark subsystem, the results were used of
calculations in the nonrelativistic model with the Buchmiil-
ler—Tye potential [13]:

Piq(0) = 0.193 GeV ¥/,

Since the estimates for the spectator decay widths of free
heavy quarks are independent of the system in which they are,
it is possible to make use of the results of calculations
performed in Ref. [74], because the values of quark masses
given in that work and in the present review coincide. This
leads to the results presented in Table 6.

Table 6. Inclusive spectator decay widths of b and ¢ quarks (in ps~').

Mode b—cid b—cts b—ce vV b—ct v ¢c—sdu c—setv

r 0.310 0.137 0.075 0.018 0.905 0.162

In accordance with the procedure described above, for the
total lifetimes of Z, and E{), baryons we have

1B =033 ps, t[E)] =0.28 ps, (5.55)
so the difference in lifetimes due to decay processes taking
into account Pauli interference and weak rescattering
amounts to about 20%. The relative contributions of various
terms to the total widths of the baryons examined are
presented in greater detail in Table 7. The contributions
depending on the baryon composition are quite significant:
40—50%. The corrections due to quark —gluon operators of
dimension 5 are numerically very small. Essentially more
important are the corrections to the 3-dimension operator,
where the role of the heavy quark time dilation in the rest
frame of the hadron is noticeable.

For the semilepton decay modes, the branching ratios of
which are presented in Table 7, the largest arising corrections
are to b-quark decays and are due to Pauli interference: the
respective widths are practically doubled. This leads to the
semilepton widths of b and ¢ quarks in the electron mode
Table 7. Relative contributions of various inclusive decay modes of

and Elfc baryons (in %).

Mode b — X c— X PI WS c—evX b—evX b—1tvX
25020 37 23 20 5.0 4.9 2.3
Et?c 17 31 21 31 42 4.1 1.9

becoming comparable in value, while for the spectator decays
the width of the charmed quark is twice that of the beauty
quark. As to the sign of terms due to Pauli interference, it is
determined mainly by the sign of the leading contribution
from interference of the charmed quark residing the initial
state with the charmed quark from the b-quark decay. Here,
the antisymmetric color structure of the baryon wave
function leads to the Pauli interference being positive.

We note that the uncertainties in the estimates obtained
are related to the predictions:

(1) of the spectator width of the charmed quark, where the
uncertainty reaches about 50%, since the agreement of
theoretical evaluations with the lifetimes of the charmed
hadrons is only qualitative (for the baryons under considera-
tion this contribution introduces an uncertainty
/T =~ 10%);

(2) of Pauli interference effects in the beauty quark decays
and in its weak rescattering with the charmed quark residing
the initial state, where the nonrelativistic model-dependent
diquark wave function is used, which results in an uncertainty
in these contributions at the 30% level (the uncertainty in the
total width is of the order of 8I'/I" = 15%).

Thus, the uncertainty in the predictions of the total =,
and E, baryon widths can be considered to fall within 20%
limits.

5.3.1 Dependence of results on the parameters. In spite of the
expected precision in predictions of inclusive widths and
lifetimes of baryons with two heavy quarks presented above,
we shall deal with this issue in greater detail owing to its
importance.

First of all, we shall examine the dependence of widths on
the masses of heavy quarks present in the baryons. The
spectator decay widths of heavy quarks are determined by
the fifth power of the masses, and the dominant corrections
due to Pauli interference and weak rescattering of the
constituents — by the third power of the heavy quark
masses. Here, the issue arises in a natural manner of the
applicability of quark—hadron duality with expansion of
quark operators, a consequence of which is the zero
contribution linear in the inverse heavy quark mass. Such
setting to zero is derived from the Ademollo— Gatto theorem,
according to which the introduction of a term with the
constant A that violates symmetry of the Lagrangian results
in corrections to the conserved observables arising only in the
second order in 4. Therefore, when interactions suppressed by
the heavy quark mass are introduced, the decay widths of the
heavy hadrons contain no contributions linear in 1/my, if
quark —hadron duality holds valid.

In this connection, extreme importance must be attributed
to the problem of the lifetime of the A, baryon, the
experimental total width of which is 20% greater than the B-
meson widths, which contradicts the predictions of heavy
quark theory [90]. The authors of Ref. [91] put forward the
hypothesis of strong violation of quark—hadron duality, i.e.
of the possible significant contribution from terms linear in
1/mg to the inclusive heavy hadron widths. This assumption
actually signifies that the effective heavy quark mass
determining the contribution of the leading term varies
depending on the hadron mass and composition. Therefore,
the looser system of the Ay baryon, where a light diquark is
present (in which the string tension is two times smaller than
that in a meson), implies the introduction of a larger effective
heavy quark mass, since it is determined on a lower energy
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scale (the cloud of virtual gluons and quarks has larger
dimensions). As a result, the total Ay width increases.

Such an approach is not admissible in the operator
expansion with quark—hadron duality, in which the heavy
quark mass is the same for all types of hadrons, since
otherwise corrections linear in 1/mg arise in the widths.
However, the hypothesis about strong violation of quark —
hadron duality has been practically discarded by the experi-
mental examination of the B.-meson lifetime. In accordance
with the ideology of Ref. [91], the lifetime 7[B.] &~ 1.3—1.5 ps
was predicted in Ref. [92], since the quarks in heavy
quarkonium are strongly bound and their effective masses
(and available phase volume in the final state) decrease, which
leads to significant suppression of the b- and c-quark decay
widths in the B.-meson. Experimental investigation yields the
value of 7[B.] = 0.48 & 19 ps, which is in excellent agreement
with estimates submitted in the operator expansion [74, 93],
with QCD sum rules [94] and potential models [4]. Thus, at
the moment the operator expansion with quark—hadron
duality is a correct instrument for calculating the inclusive
widths and lifetimes of hadrons with heavy quarks.

As has already been mentioned, the estimates presented at
the beginning of Section 5.3 were obtained under the
assumption that the chosen value of the charmed quark
mass provides for quite an accurate theoretical description
of the semilepton D-meson widths. After the publication of
paper [81], similar calculations in Ref. [95], in which a
significantly smaller mass is adopted for the charmed quark
(m. = 1.35 GeV), revealed that the same method does not
permit the description of the semilepton widths of charmed
mesons. Such a preference is, most likely, due to, first, the low
value of the c-quark current mass being obtained within the
QCD sum rules for charmonium and, second, the description
of the inclusive D-meson widths exhibiting rather a qualita-
tive than quantitative character, because the charmed quark
mass is not too large and convergence of the power expansion
in 1/mg may turn out to be slow (once again, data on the B.-
meson are not taken into account). Such premises only yield
qualitative predictions for the lifetimes of baryons with two
charmed quarks in Ref. [95], where the results of calculations
differ by two-three times from the estimates presented above.
Indeed, the significant reduction of the leading contribution
due to variation of the charmed quark mass leads to negative
Pauli interference strongly reducing the total E" baryon
width, and the expected lifetime increases significantly.

Another important uncertainty factor in the estimates of
charmed quark decay widths is the strange quark mass. Since
the charmed quark has a mass of about 1.5 GeV, the decay
phase space mainly depends on the strange quark mass (either
the current mass of 150—-200 MeV or the constituent mass
close to the K-meson mass). Suppression of the actual phase-
space volume is obviously determined by the constituent
mass. The issue of the dependence of inclusive widths on the
heavy and strange quark masses has been investigated in

greater detail in Ref. [96] in connection with an examination
of the lifetime of the B.-meson, for which the uncertainty due
to simulation of the wave function is small (heavy quarko-
nium is well described owing to the abundance of data on
charmonium and bottomonium) and the contribution from
weak annihilation operators (second-order corrections in
1/myg) is small: about 10%.

Estimates have been obtained in Ref. [96] under condition
(5.54) (which is dictated by the analysis of data on B-meson
decays) that are presented in Table 8. From the table it is seen
that, first, the small value for the charmed quark mass chosen
in Ref. [95] yields a clearly overestimated B.-meson lifetime.
Second, the choice of the current mass of the strange quark
seems somewhat preferable, since it results in a smaller value
for the B.-meson lifetime, which is in better agreement with
the central value of the experimental interval, although the
uncertainty in the data does, also, permit a description with
the constituent mass of the strange quark. We note that this
analysis is in agreement with the experimental values for the
semilepton D-meson widths.

Together with the quark masses that to a large extent can
now be considered quantities with not so large uncertainties,
variation of the light quark wave function plays an essential
part in calculations of the inclusive widths of baryons with
two heavy quarks. As indicated above, this quantity was fixed
under the assumption of similarity between the wave
functions of D-mesons and baryons, i.e. the similarity of
corrections to estimates within the framework of the potential
model.

In the analysis made in works [95, 96], the following
relation was considered to hold valid for the wave function
of the light quark in the doubly charmed baryon:

2 2 fAMpk 4P
"= 3 12 ’
where fp = 170 MeV, and the factor k =*/° is due to ‘hybrid’
logarithms for the nonrelativistic heavy quarks. Expression
(5.56) is obtained if scaling is assumed of the hyperfine spin—
spin splitting in charmed mesons and baryons, and, also, if
account is taken of spin factors and of doubling of the mass of
the diquark composed of two heavy quarks. The assumption
itself of the independence of such splitting on the meson or
baryon hadron state seems quite illusory. Nevertheless, if one
digresses from physical motivations, the numerical effect
reduces to a decrease in the factor of the light quark wave
function by two-three times. On the other hand, calculations
within the potential model lead to this factor being approxi-
mately doubled. Thus, utilization of the numerical value
adopted at the beginning of Section 5.3 yields the central
value for widths upon variation of the light quark wave
function.

Comparison of the estimates [96] involving the under-
estimated value of the light quark wave function (Table 9)
with the results presented in Table 5 gives an idea of the degree

|¥1(0) (5.56)

Table 8. Lifetimes of the B.-meson and contributions of spectator widths and corrections due to Pauli interference (PI) and weak annihilation (WA) for

different values of the quark masses.

Parameters, GeV I'lb—¢],ps! I'lc—s], ps! Tpr, ps! T'wa, ps~! [Bc], ps
my, =5.0, m.=15, m;=0.20 0.694 1.148 —0.115 0.193 0.54
my, =4.8, m.=1.35, my=0.15 0.576 0.725 —0.132 0.168 0.75
my, =51, m.=16, m;=0.45 0.635 1.033 —0.101 0.210 0.55
my =5.1, mc=16, m;=0.20 0.626 1.605 —0.101 0.210 0.43
my = 5.05, mc = 1.55, mg = 0.20 0.623 1.323 —0.107 0.201 0.48
m, =5.0, mc.=15, m;=0.15 0.620 1.204 —0.114 0.193 0.53
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Table 9. Lifetimes and inclusive widths for £/, £}, and Q. baryons.

Parameters, GeV ¢ — sX,ps! I'p; + I'ys, ps™ T, ps
E.T baryon

m, = 1.35, mg=0.15 1.638 —0.616 0.99

me.=1.6, mg=045 2397 —0.560 0.56

m. = 1.55, mg =0.2 3.104 —0.874 0.45
ES baryon

me = 1.35. mg =0.15 1.638 1.297 0.34

me.=1.6. mg=045 2397 2.563 0.20

me = 1.55. mg=0.2 3.104 1.776 0.20
Q. baryon

m. = 1.35. mgy=0.15 1.638 1.780 0.30

m.=1.6. mg=045 2397 0.506 0.34

me. = 1.55. mgy =10.2 3.104 1.077 0.24

of variation of theoretical predictions for the inclusive widths
of doubly charmed baryons. We recall that calculations with a
small mass of the charmed quark are only illustrative and
cannot be adopted owing to contradictions with data on the
B.-meson lifetime. Examination of the uncertainties due to
the quark masses and to variation in the wave functions of the
light quark in the baryon leads to the most realistic estimates
(Table 10).

Table 10. Lifetimes of doubly heavy baryons.

Baryon 1, ps Baryon 1, ps Baryon 1, ps

s 0.46£0.05 | B 0.30+£0.04 |E% 0.79+£0.02
= 0.16+£0.05 | EY, 0.27£0.03 | Ey 0.80£0.02
Qf 0.27+0.06 QSC 0.22+£0.04 | Qpp 0.80£0.02

In Ref. [97], a comparative analysis has been made of the
structure of operator expansion for heavy hadrons, based on
the symmetry properties of hadron matrix elements determin-
ing the contributions of Pauli interference and weak rescatter-
ing of the constituents '?. With a precision up to corrections in
the inverse heavy quark mass and to logarithmic terms given
by the anomalous dimensionalities of respective operators,
the scaling relations have the form

rB-] - I8’
rp*-ro°)  riE’-red
_ TEw) —TES _my Vel

CTES-TEL me v

=cc

I[Ey] - I'Ey)

(5.57)

The precision of these relations is to be estimated at the 50%
level, since, for example, in accordance with the examination
of heavy meson lepton constants the hadron matrix elements
of quark currents with charmed and light quarks are subject
to large corrections (about 50—-90%) owing to 1/mg-terms
and logarithmic renormalization. Since the considered cc
diquark is two times heavier than the charmed quark, it is
possible to consider in the first approximation that in the case
of doubly charmed baryons the aforementioned corrections
may be two times smaller.

19 Actually, the issue concerns taking advantage of the wave function of
the light quark in the gluon field of an infinitely heavy source being
independent of heavy quark flavor.

Making use of the data from Table 10 for testing the last
equality in relations (5.57) we see that the accuracy of
theoretical estimates does not permit one to make convincing
quantitative conclusions concerning the difference between
the lifetimes of baryons with two b quarks. On the other hand,
if one only deals with the arithmetic of central values, then the
examined part of equations (5.57) is indeed satisfied with an
uncertainty of 50%, which points to the qualitative applic-
ability of these relations, while their quantitative precision is
depressingly low.

5.4 Exclusive decays in NRQCD sum rules

In this section the calculation is presented for exclusive

semilepton cascade decays of doubly heavy baryons and,

also, of two-particle hadron decays in the approximation of

factorization of the weak quark transitional current [98].
Within the framework of NRQCD sum rules in Ref. [98],

the baryon current

TEoo] = ™" :(Q,] Cys4p)Q;: (5.58)

was considered that leads to the necessity of antisymmetriza-
tion at a diagram level, since the baryon can contain two
identical heavy quarks. In relation (5.58) there exists a
component giving a nonphysical contribution, but it
becomes equal to zero when the matrix element is taken over
the baryon and over vacuum. Within this approach, baryon
coupling constants are, generally speaking, different from
those calculated in Section 3, so it is necessary to make
additional analysis of two-point correlation functions, like
in Ref. [98]. However, such a choice of the current has a
formal advantage in dealing with three-point correlators
determining the form factors of, say, semilepton decays
(Fig. 29), which will be clearly seen below in the course of
investigation of the sum rules.
Let us consider the correlator

m, =i’ Jd4xd4y (0| T{J#(x)J,.(0)J; }|0) exp (iprx —ipsy),

(5.59)
where J, is the weak decay current of the heavy quark, and
indices 7 and F are the baryon quantum numbers in the initial
and final states, respectively. In accordance with the disper-

sion relations, the theoretical part of the sum rules admits the
representation

0.t )

o (> Pu(s1,52,4%)
_ _ d dsy — K~ 77 7 4+ . 5.60
(21’5)2 [m,z . an% 2 (Sl - S]())(Sz - 320) " ( )

ms

pr M DF

Figure 29. Quark loop for three-point correlator in the baryon decay.
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Here, the suspension points stand for possible subtractions
providing for convergence of the integrals. The spectral
densities p, were calculated in Ref. [98], where the limit of
spin symmetry in the effective Lagrangian of heavy non-
relativistic quarks was considered within the quark-loop
approximation with due account of the condensate of light
quarks. In this case it is sufficient to determine only one scalar
correlator.

Indeed, the hadron part of the sum rules is given by the
expression

0|JF|2
st 8,7 = 3 )
spins
(E1(pr)|J1|0)

X <EF(PF)‘JMIEI(P1)> T2
1 I

(5.61)
and the form factor for the decay of a baryon with spin 1/2
into a baryon with spin 1/2 can be written in the general form
as follows

Er(pr)| | Ei(pD) = u(pr){,G! + viG + vy Gy

+ 750,61 + 0iGs' + 0 G Fulpr).-

(5.62)
All six form factors in Eqn (5.62) are independent. However,
the NRQCD Lagrangian in the leading approximation
possesses spin symmetry, so for a small recoil momentum
that restricts the virtualities of gluon exchanges in the hadron
state it is possible to obtain relations connecting form factors
yielding nonzero contributions.

At small recoils, when the baryon 4-velocities v; and vg in
the initial and final states differ insignificantly from each
other, and their scalar product is close to unity
[w = (vrvr) — 1], the correlation function for the decay of a
heavy quark into a heavy quark has the form

Hﬁheoraflw(w)(l-l-ﬁp)h(l —75)(1+ 1), (5.63)
where

_ m

vy =uvr+ 2—’%31(111 —vp), (5.64)

f)F:UF+m—3(vF—v1). (5'65)

2my

From Eqn (5.63) it is seen that at the minimum recoil
momentum the correlation function is determined by a sole
form factor ¢™ which, however, is not universal, since it
depends on the quark composition of the baryon.

For the decay of a heavy quark into a light quark, the
correlation function is written as

I oc {&1(w) ¢r + E(w) e + E () 1 (1 = 15) (1 + ) -

(5.66)

Hence it is possible to obtain spin symmetry relations:
G/ +G)+G) =V (w), 5.67)
Gt =W (w), 5.68)

and the connection between functions &;(w):

E(w) + E(w) = E(w) = EWV(w).

Owing to heavy hadrons existing in the initial and final
states, we arrive at the conclusion that only two form factors
are not suppressed by the heavy quark mass. These form
factors are related by the formula G/ = G{1 = {(w). In the
case of zero recoil, the reduced matrix element is determined
from the equation

1 1

W
w=1)=
< ) (2n)* 8MMpZZp

; theor
S

X J J p(s1,5r.47)
(m +n13)2 (my +mz)2

- M? - M}
X exp _a 5 r_>Sr 5 F ) ds;dsp,
B; By

; theor
‘XF

(5.69)

Here, B; and Bp are parameters of the Borel transformation
with respect to invariant masses squared in the initial and
final decay states, while Z; and Z are the coupling constants
of baryons with quark currents.

Numerical estimates. From the sum rules (5.69) estimates are
obtained for the analog of the Izgur—Wise function for the
form factors of semilepton decays of doubly heavy baryons
into baryon states of spin 1/2, which are presented in Table 11
and compared with the values calculated in the potential
model. The difference between the values of &(1) in these
models do not result in contradictions, since the systematic
uncertainty amounts to about 10%. Figure 30 shows the
result for normalization of the Izgur — Wise form factor in the
Epb — Epe decay in the Borel scheme of NRQCD sum rules.

For calculating exclusive widths it is necessary to define
the dependence of the form factor upon the transferred
momentum. With the sufficient accuracy one can adopt the

Table 11. Normalization of the Izgur — Wise form factor £(1) in the case of
zero recoil momentum in sum rules and in the potential model.

Mode Sum rules Potential model
Ebb — Ebc 0.85 091

Epe — Ece 0.91 0.99

Epe — Eps 0.9 0.99

Eee — Ees 0.99 1.0

Figure 30. Form factor £(1) for the transition Eg) — Eg, in the Borel
scheme of NRQCD sum rules.
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pole model:
1
) = —57—5— 5.70
) =0 7 (5:70)
with

Mpole[b — ¢] = 6.3 GeV,  mpoe[c — 5] = 1.85 GeV.

The results of calculations of the branching ratios for the
exclusive widths of doubly heavy baryons within the NRQCD
sum rules are presented in Table 12, where the total widths
were assumed equal to the mean values given in Table 10. The
estimates also include the contribution from cascade decays
into baryons of spin 3/2. To this end the results of Ref. [99]
were used, in which the semilepton modes Ep. — E + 1V
were considered. In E¢ and E?, decays antisymmetrization
was taken into account for identical quarks, and the
correction factor 0.62 due to negative Pauli interference was
introduced for transitions " — EX. We note that the
authors of Ref. [98] claimed that the values obtained in the
sum rules are consistent both with the estimates in the
potential approach [99] and with the estimates for inclusive
decay widths, if summation over the exclusive channels
(presented in Table 12) is performed.

Table 12. Branching ratios (Br) for exclusive decays of baryons with two
heavy quarks.

Mode Br, % Mode Br, %
ESy — EL 14.9 Ef — B 4.9
B — Bl 4.6 B — By 4.4
B — By Iy 4.1 B - Ef v 16.8
EL —Ely 7.5 B — g™ 2.2
A AR 5.7 Ep o Bl 0.7
E) - Ein- 0.7 Bl — Bl 1.9
) —Efp” 1.7 Ef — Elnt 7.7
B — Byt 7.1 B — Elpt 21.7
) — By pt 20.1 Eft - Efnt 15.7
ES — Ednt 11.2 ELT — 2 pt 46.8
B — Elpt 33.6

5.5 Discussion

Above, within the framework of a consistent study of
operator expansion in the inverse heavy quark mass, calcula-
tions have been done of the total lifetimes of baryons with two
heavy quarks. The leading contribution in the expansion is
determined by the spectator widths of the inclusive decays of
heavy quarks, and significant corrections arise when the
effects of Pauli interference and electroweak scattering are
taken into account that turn out to be at the 20— 30% level for
Ec and Ey, baryons.

Measurement of the lifetimes of doubly heavy baryons
will permit one to perform comparative analysis of the decay
mechanisms for hadrons with heavy quarks, which is
especially important in the light of studies of subtle effects
involving combined CP-parity violation in the sector of heavy
quarks, since the quark interaction characteristics enter
measurable quantities with factors formed by the hadron
matrix elements due to quark currents.

To a great extent, the reliable knowledge of the
properties of these matrix elements can be enhanced by

studying the decays and lifetimes of baryons with two
heavy quarks. Such studies will permit one to analyze
quantitatively the effects of possible violation of the
quark —hadron duality (which, as noted above, are, most
likely, small). It is topical to consider the dependence of
heavy quark widths upon the hadron composition, which
may be essential in clarification of the reasons for the large
deviation from unity of the ratio between the lifetime of the
Ap baryon and that of B-mesons. Measurement of the
lifetimes of doubly heavy baryons will also make it possible
to study the confinement characteristics of heavy quarks in
various systems.

A field open to activities is represented by calculations of
the exclusive decay widths of baryons with two heavy quarks.
The estimates obtained within the framework of NRQCD
sum rules and potential models are, doubtless, preliminary,
since the question still remains concerning the role of
corrections in the inverse heavy quark mass, which may be
quite significant for hadrons with a charmed quark.

Moreover, studies of exclusive hadron decays of doubly
heavy baryons are of significant practical interest. Among the
hadron decays those channels are to be especially singled out
that do not involve cascade decays of two heavy quarks (since
such modes require reconstruction of three secondary
vertices, like, for example, E¢. — Q. + X — E + X), but are
processes with weak rescattering of the constituent heavy
quarks, resulting in the presence of only a single heavy quark
in the final state.

Figure 31 illustrates such a decay channel for the By,
baryon — only one heavy hadron has to be detected. The
contribution of weak rescattering to the total width is quite
large (about 20%). Simple estimates of the suppression
factors show that the decay branching ratio should be at the
level of some thousandths.

Figure 31. Baryon decay Z,. — D®WK®p in a process with weak
rescattering of the constituent b and ¢ quarks.

We believe experimental studies of doubly heavy baryons
to be quite a feasible task, first of all, at hadron colliders.
Measurements of their decay characteristics are capable of
essentially enriching our knowledge about heavy quark decay
mechanisms.

6. Conclusions

The main physical characteristics of baryons containing two
heavy quarks have been presented in this review. The
description of such hadrons is based on the hierarchy of
energy scales which determine the times and distances that are
typical for strong interactions in baryon-forming subsystems.
Thus, owing to the nonrelativistic motion of heavy quarks
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with respect to each other, the formation time of a system of
two heavy quarks is longer than the time of hard heavy-quark
formation and than the time required for hard gluons to
‘dress’ the quarks.

On the other hand, the formation time of a heavy diquark
is much shorter than the characteristic interaction time in the
case of light quark confinement (low-frequency strongly
interacting fields). Owing to the hierarchy of strong interac-
tions in the quark systems dealt with it turns out to be possible
to develop methods of effective heavy quark theory for
baryons with two heavy quarks, in which one can formally
single out the leading approximation and construct a
systematic method for calculating corrections to it.

The following special methods for dealing with two-quark
baryons have been developed within the description of
hadron systems with heavy quarks, based on general
approaches:

the static quark potential and a potential model for
doubly heavy baryons, separation of the motion of heavy
quarks in the diquark and of the light quark in the diquark
field;

formulation of two-point NRQCD sum rules for quark
currents corresponding to baryons with two heavy quarks,
calculation of the masses of the ground baryon states and of
their coupling constants with currents within the approach
taking into account corrections to the local condensate of
light and strange quarks;

evaluation of the anomalous dimensions of baryon
currents involving two heavy quarks;

scaling functions for diquark fragmentation;

numerical calculations of the complete set of fourth-order
QCD diagrams, analysis of higher twists in the transverse
momentum;

generalization of the method of operator expansion for
calculating inclusive widths of baryons with two heavy and
light quarks;

formulation of three-point NRQCD sum rules for
exclusive semileptonic decays and hadron decays in the
approximation of factorization of the transitional current.

The most impressive physical effects in baryons contain-
ing two heavy quarks are the following:

the existence of a system of quasi-stationary excited
levels in baryons with identical heavy quarks due to
suppression of the transition operators to low-lying states,
which is caused by the necessity of altering the diquark
quantum numbers, since for a number of states (in
accordance with the Pauli exclusion principle) the opera-
tors, not suppressed by the heavy quark mass and the small
size of the diquark, must become zero;

cascade processes of fragmentation at high transverse
momenta, for which it is possible to obtain analytical results
for the universal fragmentation functions in perturbative
QCD (of a heavy quark into a heavy diquark or of a heavy
diquark into a doubly heavy baryon) and to describe their
evolution due to the emission of hard gluons within the
framework of the QCD renormalization group;

separation of the fragmentation and recombination
modes in hadron processes by taking into account higher
twists in transverse momentum, which can be described
within the framework of QCD perturbation theory when
calculating the complete set of diagrams for the given order in
the coupling constant;

large (20—50%) contributions from nonspectator Pauli
interference and weak rescattering effects, dependent on the

baryon composition, to the total lifetimes of doubly heavy

baryons, in particular, in the presence of a charmed quark,

which leads to strong splitting of the baryon lifetimes:

'] > Q] > T[E,
= = 0

TE5e] > T[Epe] > T,

T[Zep] ~ Q) > T[Egy);

cascade decay mechanisms of baryons with two heavy
quarks, and the existence of special decay modes due to weak
rescattering, which have a large branching ratio.

Doubtless, direct mass measurements of the ground and
excited states will permit one to essentially specify the
formation dynamics of bound states with heavy quarks.
Detailed theoretical investigation is required of radiative
transition processes (both electromagnetic and hadronic)
between quasi-stationary levels of doubly heavy baryons,
for which the chiral Lagrangian method can be developed in
the case of soft emission of Goldstone mesons, for instance, of
pions.

In the present review quite a full picture has been
presented for the production mechanisms of doubly heavy
baryons. Searches for such baryons at hadron colliders with
high luminosity seem to present the best prospects.
Transverse momentum distributions of baryons, which
contain information on the production modes, could
become rich in content and clarify the reasons for the
disagreement between theory and experimental data on the
yield of b-hadrons.

The experimental information that, probably, can be
considered the most interesting information consists in the
data on the lifetimes of doubly heavy baryons, since they
are closely related to the entire system for describing
inclusive decays of heavy hadrons. Here, it is important to
know the branching ratios for semileptonic widths, which
reveal the contribution from gluon corrections to the
nonleptonic Lagrangian of weak charged quark currents.
The lifetimes will essentially enrich the knowledge of heavy
quark masses and of the relative role of various decay
mechanisms, to which they are extremely sensitive. The
description of exclusive hadron decays of baryons with
two heavy quarks will, most likely, require significant
theoretical effort.

On the whole, the physics of baryons containing two
heavy quarks is extremely rich in content and informative. It
is justified in occupying a worthy place in experimental
studies in the light of the optimistic prospects put forward
by modern theory in this field.
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7. Appendices

7.1 Spectral density coefficients
The spectral densities in equation (3.18) have the coefficients

Mo = 1607 (429M, + T15Mg o + 403 Mg + T70°)

.1 = 1040 (23IMg, + 29TMG o + 121 Maiqe” + 150°)
B 10

(Maiq + ©)’

+ 9438 M @ + 4290M G 0 + 8T I Mgigo* + T700°%) .

(7.1)

The coefficients of the spectral densities in equation (3.19) are
written in the form

(3003M g, + 9009 M,

Mo = 420 (Mg, + 48Mgiqw + 140%) |

M1 =3 (35Mgy + 28Maiqo + 50°7) , (7.2)

5 (105 Mgy, + 315M G 0

M2 = 7(Mdiq + o)

+279Mgiqw* + T70°%) .

The spectral densities with due account of Coulomb correc-
tions in equation (3.23) are determined by the coefficients

Ny = 2Maiq + )0,

c  3(2Mgyq + o)

3 2
N = Maq + @ (4AM gy + Mg o + dMgiq@® + @?),

(7.3)
1
—— (12M} 4 24M 3 o + 32M} o?
(Md' + (J))2 diq diq diq
iq

+ ZOMdiqa)3 + 5604) .

Cc _
Ni2=

With allowance for Coulomb corrections the coefficients of
spectral densities in equation (3.24) take the form

n50 = 2Maig + 0)o,

2 2
;72(?1 = —Mdiq P (sziq + 2Mdiq(}) + CL)Z) s (74)
2
C 2 2
Nyg=—"-——= M3, + 2Mgqw + 7).
20 (Mdjq + 0))2 ( diq “ )

For the spectral densities with the gluon condensate in
equation (3.29) we find

nCo = 84M3, + 196 M3 0 + 133Maiq® + 1107,

o = - Ry —— (210Mgy + TOM o
+ 21 Mgiq@* + 30?), (7.5)
2
2
iy =——— 2I0Mg, + T0Mj,o

(Maig + @)
+ 2IMgiq@* + 30?).
7.2 Transverse momentum distribution

In the case of fragmentation of a vector diquark, in the scaling
limit the distribution over ¢ = p, /M for the baryon state

about the fragmentation axis is given by the function

642 RO 1
8l 3(1— ) M3 10

D(1)
X (z(30r3 —30r* — 61127 + 45r21% 4 337312

—17r* 2 4+ 304 — 9t + 15721 — 91314

— (30r*— 99r212 — 541312+ 27r* 2+ 91* 4 18r1* — 6r%1*

1 —r)t
+ 1873 1% + 3r*t* 4 31% — 6r1° 4 9r%¢%) arctan ( ’2
r+t
2 1 12
240253 + 1 4 %) In %) . (7.6)

7.3 Spectator effects in baryon decays
The operators of Pauli interference and of electroweak

—
=)

scattering in E.. baryons have the form

2G2 me\ >
Tor = ——E ;21 = =€
PI 4 mc( my

K(l 722,)2 o 42)3)

X

—

% (@7,(1=7s)e) (47" (1 = v5)g;)
2 3
+ ((] _22’) _a _327) )(517’1755i)(qi7)“(1 —VS)Q_/)}

x [(Q +C.)? +%(1 — k') (5¢? + C? - 6c,c+)]
N [((1 7227)2 o 42)3>

X (€, (1 =75)¢) (g7 (1 = p5)ai)
— Z_ 2 — Z_ 3
+ ((1 5 r_4a 3 ) )(Efmscj)(éjv“(l —“/5)611')}
x k'V2(5C2 + C* — 6CC+)} , (7.7)
2
Tws = 24%17&(1 - Z+)2

x Kci +C? +%(1 — k') (CT - Cf))
x (@7, (1 = ps)e) (g 7*(1 = vs)q;)
+kV2(CT = C?) (@, (1 —ys)e) (g7 (1 - %)m)} , (7.8)

with py = pe +pg p— =pe — pg» and zo =m?2/p?. In the
expressions for p, and p_ we use their threshold values

m m
p+:l7c(l+_q>a P*ZPC<1_—(I>-
M me

Formulae (7.7) and (7.8) were derived by taking into
account the low-energy renormalization of the nonleptonic
weak interaction Lagrangian for nonrelativistic heavy
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quarks [6, 89]

Leff, log =

x (eI ,e)(dIr*d) +%(C2

Gim? [1 1
;? {5 (cﬁ +C2 2 (1= k)

- cE))

— C2)k*(er,d)(dr*c)

1
+ §(ci — CHk'P (k7 — 1)(elytc) ¢

1 1
-3 ((Q +C.)? +5 (1= k'2)(5¢2 + C? — 6C+C,))

2
X <EFMc +§ Eyﬂy*) (@l *u)

_ % K'V2(5C2 4+ C? — 6C,C.)

_ 2 _ _
X <C,‘ F;tck + g Cj Vﬂ?Sck> (ukr“ui)

oo —

— ((c+ —C.) +%(1 —k')(5¢% +C? + 6C+C_))

2
X (EF,,C + 3 Ey#ysc> (sT*s)

1

—gkPCt+ 2 +eCiC)

X (c,F Cck+= c[yuy56k> (5 T*s;)
1
6

2
kY2 (k=20 = 1)(5CT + CE)(EF#Z“c+§ ayHySz“c)j“ﬂ],
(7.9)

where

Fﬂ :V,u(] _VS)a

s (,u)

k= os(me)

, and

j;f = ﬁy#t"u + c?y#t”d—i— Ey#t”s

is the color current of light quarks (¢ = 4%/2 are the color
generators).

Here, it is necessary to make a comment relevant to the

terms of the effective Lagrangian containing the color current
of light quarks. We have neglected these terms, because they

are present in the Lagrangian with the factor &~

2/9 _ 1, the

numerical value of which is of the order of 0.054.
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