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Chaotic quantum transport in superlattices

T M Fromhold, A A Krokhin, P B Wilkinson,
A E Belyaev, C R Tench, S Bujkiewicz, F W Sheard,
L Eaves, M Henini

Abstract. We report a new type of quantum chaotic system in
which the classical Hamiltonian originates from the intrinsi-
cally quantum mechanical nature of the device. The system is a
semiconductor superlattice in a magnetic field. The energy ±
momentum dispersion curves can be used to calculate semi-
classical orbits for electrons confined to a single miniband.
When a magnetic field is applied along the superlattice axis
(x-direction), the electrons perform Bloch oscillations along the
axis with cyclotron motion in the orthogonal plane. But when
the magnetic field is tilted away from the x-direction, the orbits
are chaotic, and have a spatial width along the superlattice axis,
which is much larger than the amplitude of the Bloch
oscillations. This is because the tilted field transfers momen-
tum between the x- and z-directions, thereby delocalizing the
electron path. This type of chaotic dynamics is fundamentally
different to that identified in our previous studies of double ±
barrier resonant tunneling diodes. We investigate the relation
between the orbits of the effective Hamiltonian, and the
quantum states of the superlattice. In the regime of strong
chaos, the wave functions have a highly diffuse structure which
extends across many periods of the superlattice, just like the
corresponding classical orbits. This chaos-induced delocaliza-
tion increases the current flow through real devices. By
contrast, in the stable domain the electron orbits remain
localized along the paths of particular quasi-periodic orbits.
We use theoretical and experimental current ± voltage curves to
show how the onset of chaos manifests itself in the transport
properties of two- and three-terminal superlattice structures,
and identify current oscillations associated with classical
resonances. We also consider analogies with ultra-cold atoms
in an optical lattice with a tilted harmonic trap.

We investigate the semiclassical motion of electrons confined
to the lowest miniband of a GaAs/(AlGa)As superlattice with
a highmagnetic field. Tilting themagnetic field away from the
superlattice axis induces a transition from stable regular
motion to chaotic dynamics which have an intrinsically
quantum-mechanical origin associated with the miniband
dispersion relation. The onset of chaos delocalizes the semi-
classical orbits and corresponding quantized eigenstates. We

use a classical kinetic formalism to calculate the electron drift
velocity versus applied bias voltage, and find that chaos-
induced orbital delocalization can produce a large increase in
the electrical conductivity.

Most experimental studies of the quantum properties of
systems with chaotic classical dynamics have been performed
either on atoms or on low-dimensional semiconductor
structures [1]. The first experiments were performed on
highly-excited hydrogenic atoms in a magnetic field, and
revealed periodic fluctuations in the photo-absorption spec-
tra, associated with unstable periodic electron paths [2, 3].
These orbits modulate the energy level density, and produce
`scarred' wave functions in which the probability density is
concentrated along the classical path [4, 5]. More recently,
ultra-cold atoms in a phase-modulated optical lattice, formed
using two counter-propagating laser beams to set up an
electromagnetic standing wave [6], have provided experimen-
tal evidence for dynamical localization in a quantum-
mechanical `kicked rotor' [7]. In semiconductor physics,
chaotic electron transport has been explored in two-dimen-
sional quantum dots [1, 8, 9], antidot arrays [10], and in
resonant tunneling diodes (RTDs) [1, 11 ± 19]. The RTDs
contain a square potential well, in which electrons follow
chaotic classical paths when a tilted magnetic field is applied
[1, 11 ± 19]. In the regime of strong chaos, scarred states in the
well generate series of resonant peaks in measured tunneling
characteristics [12, 15].

In this paper, we consider how semiconductor super-
lattices (SLs) with a tilted magnetic field can be used to
provide a new type of quantum chaotic system that is
accessible to experiment. In contrast to previous structures
that have been used to study quantum chaos, the effective
classical Hamiltonian for electron motion in the SLs has an
intrinsically quantum-mechanical origin associated with the
electronic energy bands. For low electric fields, SLs have well-
defined minibands. The energy ±wavevector dispersion rela-
tions define an effective Hamiltonian that determines semi-
classical [20] orbits for electrons confined to a single mini-
band. Our calculations for this system show that tilting an
applied magnetic field B at an angle y to the SL axis induces a
transition from stable to chaotic classical motion. The onset
of chaos delocalizes both the classical orbits and the
corresponding quantum wave functions, and thereby
increases the electron drift velocity.

The potential energy of an electron in a SL structure is
schematically shown in Fig. 1. Here we consider GaAs/
(AlGa)As SLs containing barriers of width b � 1:25 nm and
wells of width w � 9:5 nm. The SL period a � b� w. The Al
fraction is taken to be either 0.3, for which the miniband
width D � 26 meV, or 1, which gives D � 8 meV. We have
investigated electron transport in the first miniband of the SL,
using a tight-binding approximation for the energy ±wave-
vector dispersion relation

E�k� � D�1ÿ cos kxa�
2

� �h2�k2y � k2z�
2m�

;

wherem�=0.07me is the electron effectivemass formotion in
the �y; z� plane. The E�k� relation defines an effective Hamil-
tonian for electron motion in electric and magnetic fields that
are small enough to preserve the miniband structure. This
Hamiltonian is obtained from E�k� by adding the electro-
static potential energy due to the electric field F � �ÿF; 0; 0�
and making the substitution �hk � p! p� eA � m�v, where
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p is the canonical momentum, v � �hÿ1qE=qk is the electron
velocity, and A is the magnetic vector potential. With the
magnetic field B applied in the �x; z� plane (Fig. 1, inset), we
take

A � �0; xB sin yÿ zB cos y; 0� :

The canonical momentum component py is then constant and
the problem reduces to two-dimensional motion in the �x; z�
plane with an effective potential energy [21]

U�x; z� � e2B2

2m�
�x sin yÿ �zÿ z0� cos y�2 ÿ eFx ; �1�

where z0 � py=eB cos y. The form of the classical orbits is
independent of z0 and the total electron energy, which we
both set to zero. We have calculated these orbits by solving
Hamilton's equations numerically using a fourth-order
Runge ±Kutta method [21].

Figure 2 shows electron orbits in a GaAs/(Al0:3Ga0:7)As
SL. Note that Figs 2a ± c show the trajectories in real (x, z)
space, whilst Figs 2d ± f show the orbits in (kx, kz) space. For
y � 0� the Hamiltonian is separable. The electrons execute
cyclotron motion about the z-axis and Bloch oscillations, of
angular frequency oB, along the x-direction (Fig. 2a). For
y 6� 0�, the orbital motion changes from regular to chaotic as
B is increased from0T.When y � 40� andB � 0:6T (Fig. 2b),
most orbits are stable and qualitatively similar to that in
Fig. 2a. But when B is increased to 1.5 T, the orbits become
chaotic (Fig. 2c). Because the tilted magnetic field transfers
momentum between the x- and z-directions, these orbits
extend much further along the SL axis than the Bloch
oscillations at y � 0�, whose amplitude is limited by the
conservation of energy for motion along the x-direction.
The electron orbits in k-space show the transition to chaos
in a different way. In an extended miniiband scheme, the
Bloch oscillations at y � 0� produce a sinusoidal kz versus kx
plot (Fig. 2d). The stable orbits found for y � 40� and
B � 0:6 T generate quasi-periodic oscillations in k-space

(Fig. 2e). The amplitude of these oscillations is modulated
by beating between the cyclotron and Bloch frequencies. As
the magnetic field is increased to 1.5 T, the k-space
trajectories break into chaotic oscillations (Fig. 2f).

We emphasize that the chaotic dynamics have a funda-
mentally different origin to those of electrons in RTDs with a
tilted magnetic field. In the RTDs, chaos is generated by
collisions with the well walls which interrupt the electron
motion at irregular times [11 ± 19]. By contrast, electrons in a
SL with tilted B exhibit chaotic dynamics because they have
an anisotropic and energy-dependent effective mass due to
the different dispersion relations for motion parallel and
perpendicular to the SL axis. Tilting B couples the motion
along the x- and z-directions and thereby induces chaotic
dynamics. The classical orbits considered here are also
unrelated to the chaotic oscillations of charge domains in
driven SL structures [22, 23].

The transition to chaos in this system is characterized by a
rich mixed stable-chaotic classical phase space. This can be
seen from Fig. 3 which shows a PoincareeÂ section (a slice
through the classical phase space) calculated for electrons in a
GaAs/(Al0:3Ga0:7)As SL. To construct the section, electrons

a d
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z
B

y

e

c f

Figure 2. Classical electron orbits in (x, z) plane (a ± c) and (kx, kz) plane

(d ± f) (axes are shown in the insets) with F � 2:4� 105 Vmÿ1: B � 0:6 T,

y � 0� (a, d); B � 0:6 T, y � 40� (b, e); B � 1:5 T, y � 40� (c, f). Vertical
lines show positions of barriers in SL layer and indicate scale.
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Figure 1. Schematic conduction band diagram showing energy versus

position x for an electron in a SL under bias. Shaded region indicates

energy range of the lowest electronic miniband. Inset shows orientation of

tilted magnetic field relative to the x-direction, which is parallel to SL

axis.



are launched with a range of starting velocities at y � 60� and
B � 2:3 T. The scattered points show coordinate z and
velocity vz at each turning point along the x-direction
(whenever vx � 0). The phase space contains a complex
hierarchy of stable islands that disintegrate to form a chaotic
sea asB is increased. Stable islands embeddedwithin a chaotic
sea can be seen most clearly towards the left-hand side of the
plot.

An extensive body of theoretical work has shown that the
unstable but periodic orbits of a chaotic classical system give
rise to periodic fluctuations in the energy level density [1] and
scar subsets of wave functions [1, 4, 15]. But it is unclear how
the quantized states of a SL in a tiltedmagnetic field will relate
to chaotic electron orbits which themselves originate from
the intrinsically quantum-mechanical nature of minibands.
As a first step in exploring this question, we have calculated
quantized states for a GaAs/(Al0:3Ga0:7)As SL using a
technique similar to that developed for RTDs in Refs [12, 15].
The SL system is ideal for theoretical analysis because for our
chosen gauge the dynamics, classical or quantum, become
two-dimensional. The eigenfunctions can then be expanded in
a basis of Wannier functions along the SL axis with simple
harmonic oscillator (Landau) states along the z-direction [21].
For the low energies and fields considered here, inter-
miniband coupling is negligible and so we only include
Wannier states for the first miniband in our basis. Figure 4a
shows the regular antinode pattern of a Wannier ± Stark
eigenfunction at y � 0�. The probability density is concen-
trated within the corresponding classical orbit (Fig. 2a), and
has a width of � D=eF � 5a along the x-direction. Figure 4b
shows the probability distribution of an eigenfunction
calculated in a regime of chaotic classical dynamics at
y � 40�. Just like the chaotic classical paths, the wave

function has a highly irregular and diffuse structure which
extends across many (� 50) SL periods. Since the onset of
chaos delocalizes both the classical orbits and the correspond-
ing quantized states, we expect that it will give rise to an
experimentally-observable increase in the electrical conduc-
tivity of the SL.

To quantify this effect, we have calculated the electron
drift velocity vd along the x direction as a function of the bias
voltage V (F � 5� 106V Vmÿ1 with V in volts) dropped
across a 40-period GaAs/AlAs SL. Our calculations used the
classical kinetic formula

vd�V� / 1

t

X
s

�1
0

exp
ÿt
t

� �
v s
x�t� dt ; �2�

where the summation is over all trajectories s consistent with
the electron injection energy, v sx�t� describes the time
evolution of the x component of velocity (determined by
numerical solution of the classical Hamiltonian [21]) for an
electron in the sth trajectory, and the electron scattering time
t � 1 ps is obtained from experiment [24].

Figure 5 shows vd�V� curves calculated for electrons
starting from rest at the bottom of the lowest (8 meV wide)
miniband. We emphasize that similar results are obtained for
a wide range of injection energies. When y � 0�, the electrons
perform Bloch oscillations along the SL axis (Fig. 2a). The
vd�V� plot (solid curve in Fig. 5) peaks at the voltage
VB � 12 mV for which oB � 1=t [25]. The dashed (dotted)
traces in Fig. 5 show vd�V� curves calculated for y � 45� and

z
B

y

x

a

b5a

Figure 4. Probability density plots (white � 0) of electron eigenstates for

F � 4:9� 105 Vmÿ1 and (a) B � 0:6 T, y � 0� showing amplitude 5a of

corresponding Bloch oscillation, (b) B � 1:5 T, y � 40�.
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Figure 3. PoincareÂ section showing (z, vz) values (arbitrary units) when

vx � 0, calculated for B � 2:3 T, y � 60�; and F � 2:4� 105 Vmÿ1.



B � 1:5 T (5 T). ForV9VB, the shape of both of these curves
is similar to that for y � 0�. Moreover, in this low voltage
regime, tilting the magnetic field has little effect on the
magnitude of vd. This is because when V is small, the
electrons travel such a short distance before scattering that it
is hard to distinguish between the regular (y � 0�) and chaotic
(y 6� 0�) trajectories, and so both types of orbit have similar
drift velocities. In a tilted magnetic field, vd is slightly lower
because the field component parallel to the potential barriers
deflects the electron trajectories, thus reducing the average
velocity along the SL axis [26]. At high voltages, by contrast,
the mean free path of the electrons is long enough for the
differences between regular and chaotic orbits to influence the
transport properties of the SL. Electrons in spatially extended
chaotic trajectories (Fig. 2c) travel further along the SL before
scattering, and therefore have higher drift velocities. This
should raise the electrical conductivity measured in electron
transport experiments.

In a tilted magnetic field, the vd�V� curves contain weak
oscillatory structure which can be seen most easily in the
dotted (5T, 45�) trace in Fig. 5. The origin of these oscilla-
tions seems to involve resonances between the classical
cyclotron and Bloch frequencies when y � 0�, and will be
analyzed in detail elsewhere [27].
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Society of London. T M F was supported by an EPSRC
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Quasiclassical memory effects: anomalous
transport properties of two-dimensional
electrons and composite fermions subject
to a long-range disorder

F Evers, A D Mirlin, D G Polyakov, P WoÈ lfle

Abstract. We have studied the ac response and magnetoresis-
tance of a two-dimensional electron gas in high-mobility
samples in the presence of smooth disorder, with emphasis on
the composite-fermion description of a half-filled Landau level.
We have found that the low-o behavior of the ac conductivity
s�o� is governed by memory effects associated with return
processes that are neglected in Boltzmann transport theory: the
return-induced correction to Re s exhibits a kink / joj. It is
shown that the non-Markovian quasiclassical kinetics leads to a
strong magnetoresistance Drxx. We argue that the quasiclassi-
cal memory effects account for the positive Drxx observed at
small deviations from half-filling. At a larger deviation, the
positive magnetoresistance is followed by a sharp falloff of rxx.

Recently, there has been a revival of interest in quasiclassical
transport properties of a two-dimensional electron gas
(2DEG). This is motivated by the realization that the
classical dynamics in a disordered system constitutes in fact
far more than the idealized Drude picture and, to describe the
transport properties of the system, one has sometimes to
completely abandon theories based on the Boltzmann
equation. In Boltzmann transport theory, formulated in
terms of a collision integral, quasiclassics leads to the Drude
results: analytical behavior of the ac conductivity s�o� at
o! 0, zero magnetoresistance (MR), etc. It has been
demonstrated, however, that quasiclassical memory effects,
neglected in the conventional Boltzmann approach, yield a
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Figure 5. vd�V� curves calculated for B � 5 T, y � 0 � (solid curve),

B � 1:5 T, y � 45�(dashed curve) and B � 5T, y � 45� (dotted curve).


	刀攀昀攀爀攀渀挀攀猀

