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Abstract. Transport properties of a new kind of ballistic
electron billiards Ð two-dimensional (2D) lattice of Sinai
billiards coupled through quantum point contacts Ð are
experimentally studied. This lattice is peculiar by simultaneous
existence of the effects inherent to single Sinai billiards or
quantum dots, and the features reflecting lattice properties of
system.Magnetotransport measurements give very pronounced
commensurability peak even if the conductivity of the lattice
G5 e 2=h. Consequently it preserves the properties of ballistic
regular structure at these conductivity states. On the other
hand, the gate voltage dependencies of G show that the system
behaves as percolation one. In weak magnetic fields negative
magnetoresistance (NMR) is observed. It is described by theory
of chaotic weak localization developed for case of single
ballistic cavity. This NMR increases in going from G > e 2=h
to G5 e 2=h. Thus, 2D lattice of coupled Sinai billiards is a
unique system where coexistence of order, disorder and chaos
are clearly demonstrated.

Quantum and classical transport in systems with dynamic
chaos has been intensively studied in the past few years, since
the successes ofmodern semiconductor technology havemade
it possible to obtain various experimental realizations of such
systems with electron billiards as an example. At present, two
varieties of these systems are studied. The first one is single
billiards (regular or chaotic Bunimovich or Sinai billiards)
[1 ± 5], while the second one is macroscopic 2D (antidot
lattice) [6 ± 10] or one-dimensional [11] Sinai billiards.

This paper is the first report on the results of experimental
investigation of a new systemwith dynamic chaos. The system
was built on the basis of a 2D lattice of the large and dense
antidots fabricated from a high mobility 2D electron gas in
GaAs/AlGaAs heterojunction with a metallic gate evapo-
rated on the top, that permitted us to control the conductivity
of the structure in a sufficiently wide range, from g � 0:01 to
g � 2.

The square and hexagonal lattices of antidots were
fabricated on the basis of a 2D electron gas with the electron
density NS � �2 ± 3� � 1011 cmÿ2 and the mobility m �
�3 ± 8� � 105 cm2 Vÿ1 sÿ1, corresponding to the mean free
path l � �3 ± 6� mm, by means of electron lithography and
subsequent plasma etching. Then the NiAu or TiAu gate was
evaporated on the top of the device. The samples used in the
experiments were two Hall bridges with 100 mm in length and
50 mm in width. The lattice of antidots covered entirely the
one Hall bridge. We investigated the samples with the lattice
periods d � 0:6 mm and d � 0:7 mm. The lithographic size of
antidots 0:2 mmwas the same for all samples. However, owing
to the depletion regions, the actual size of antidots (a) was
larger, being approximately equal to the lattice period even
before the gate evaporation.

Figure 1a shows the set of temperature dependences of the
conductivity g�T� for the sample AG219 with the period
d � 0:6 mm (m � 7� 105 cm2 Vÿ1 sÿ1 at NS � 2� 1011 cmÿ2

in the unpatterned part of the sample) for different values of
the gate voltage. It is seen that for g > 1 the conductivity is
practically temperature independent. More exactly, a weak
logarithmic decrease of g is observed, which is typical of weak
localization effects. The temperature dependence becomes
more noticeable for lower values of the conductivity, but it
still remains weak even for g5 1. It is well described by a
power law g�T� / T a, with a < 1 for all the samples studied.
Specifically, for the dependences depicted in Fig. 1a a �
0:1 ± 0:27 at g5 1. A similar behavior is observed for the
sample with a lower mobility (AG35, m � 5� 105 cm2

Vÿ1 sÿ1) but with larger values of a � 0:3 ± 0:66 (Fig. 1b).
The behavior of g�T� described above is significantly different
from the behavior of the unpatterned 2D electron gas both in
silicon MOS-transistors [12] and in AlGaAs/GaAs hetero-
junction [13], as well as for antidot lattices with short period
[14, 15]. At g � 1 a transition from the weak logarithmic
dependence (weak localization regime) to the strong expo-
nential one (strong localization regime) is observed in all these
cases. In our case a weak logarithmic decrease of g (for g > 1)
is followed by a weak power law, that has not been observed
in other 2D systems. Figure 2 shows the typical experimental
dependence of the conductivity vs. gate voltage and the
theoretical curve calculated in according to the expression
depicted in the left upper part of the figure. This expression is
similar to one well known in the percolation theory as the
problem of sites on square lattice [16]. The theory gives the
value t � 1 ± 1:5 for critical index t, which is close to
experimental one as is seen from the figure. It suggests that
our system demonstrates the percolation behavior and the
saddle points between antidots are the sites of square lattice.

Consider the influence of magnetic field. It is well known
that in AlGaAs/GaAs heterojunctions, a transition from an
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insulator to the quantum-Hall liquid is observed at g < 1 and
an applied magnetic field. The transition is characterized by
the critical point Bc and gc � 0:5 ± 1 [13]. Our samples exhibit
a radically different picture. It is seen from Fig. 3 that for all
values of g�B � 0� at the magnetic fields B � 1 T the
transition takes place from weak power-law dependence
g�T� to no temperature dependence at all. Moreover, the
transition is of different kind, for there is no critical point, and
the metallic behavior extends for g5 1. Figure 3 also shows
an interesting behavior in weak magnetic field. For all values
of g, the negative magnetoresistance is observed at the
magnetic fields B < 0:05 T, followed by the peak at
B � 0:2 T, corresponding to the condition 2Rc � d. This
peak is well known for the antidot lattices at g > 1 and
originates from the so-called pin-ball trajectory surrounding

an antidot (the trajectory is numbered by 1 in the inset to
Fig. 3a). As is seen from Fig. 3c, the second commensurate
peak, corresponding to the condition 2Rc � �

���
2
p ÿ 1�d, is

observed at g � 1. This peak is associatedwith the trajectory 2
inside the billiard. The positions of the commensurability
peaks show that we really deal with the lattice of closely
situated antidots with d � a and d4 dÿ a. The Sinai billiards
between the antidots have the area S � d2�1ÿ p=4� and
contain a large number of electrons N4 1. In our case we
have S � 0:5 mm2,N � 70 for d � 0:7 mm, and S � 0:36 mm2,
N � 50 for d � 0:6 mm. It is important that both the main
commensurability peak and NMR are conserved at the
transition from g > 1 to g5 1.

The behavior of NMR is shown in Fig. 4 in more detail. It
is characterized by two distinguishing features: (i) for all
states with 0:05 < g < 2 NMR is cut off at the same
magnitude of the magnetic field B � 0:05 T; (ii) NMR
noticeably increases with decreasing g. Figure 4a shows that
at g � 0:05 it reaches a considerable value about 40%. It
should be noted that the higher the resistivity, the stronger the
temperature dependence of NMR, and it is even stronger
than g�T �. For g > 1 NMR can be attributed to the effects of
weak localization in open chaotic billiards [12], because it has
relatively small amplitude and Lorentzian line-shape. The
behavior of NMR for g5 1 is surprising. It increases by an
order of magnitude, reaching a considerable value compar-
able to the total resistance of the sample, while the line-shape
of NMR is described by a Lorentz curve of the same width.
The width is equal to DB1 � 27� 2 mT for the sample
AG219. It corresponds to a half magnetic flux quantum
through the area of the billiard that is equal to d 2�1ÿ p=4�.
The fact that the width is determined by the magnetic flux
quantum is well seen from the comparison of NMR for the
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Figure 1. Temperature dependences of the conductivity at the transition from g > 1 to g5 1. Solid lines are g / T a.

2.5

2.0

1.5

0.5

0

1.0

0.48 0.50 0.52 0.54 0.56 0.58
Vg, V

Experiment

V c
g � 0:49 V

g, e2hÿ1

g � 28:6�Vg ÿ V c
g �t, t � 1:26

AG35

T � 60 mK

Figure 2. Experimental and calculated gate voltage dependences of the

conductivity for the square lattice.

October, 2001 Localization and quantum chaos 21



samples with two different periods 0.6 mm and 0.7 mm. As it is
clearly seen from the Fig. 4c the width of NMR curve for the
period 0.7 mm equals DB2 � 20� 2 mT, that is DB1=DB2 �
0:72=0:62. Thus, at g5 1 we observe NMR which is very
similar toweak localizationNMRin chaotic openbilliards [2].
In hexagonal lattice the area of the billiards is equal to
d 2� ���3p =4ÿ p=8�. It means that the width of NMR curve for
the lattice should be approximately 5 times larger than for the
same curve in square lattice with the same period. Figure 5
shows the results obtained for hexagonal lattice. It is seen that
they support this suggestion. Thus, all NMR experiments
strongly indicate that we deal with the chaotic weak
localization in open ballistic Sinai billiards.

Let us discuss the results obtained. First turn to the
temperature dependence at the transition from g > 1 to
g5 1. It differs from the conventional picture of the metal ±
insulator transition in 2D electron systems. This picture is
based on the concept of Anderson localization of electrons,
though it were the model of minimal metallic conductivity
(MMC) or the scaling theory (ST) [18]. According to this
concept, in a macroscopic 2D system, the transition should
occur at kFl � 1 or g � 1 from the metallic behavior (as in
MMC model) or from the weak localization (as in ST) to the
strong localization characterized by the exponential tempera-
ture dependence of the activation type (hopping conductivity)
or of the Mott type (variable range hopping conductivity). In
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real systems the transition can be quite complicated, but for
g5 1 the state with hopping conductivity is always realized
[12, 13]. We know only one work [19] in which the linear
temperature dependence for g5 1 was observed in thin In2O3

films. Recently a similar system has been considered theore-
tically [20]. Within this model, the metal grains with g4 1 are
coupled by tunneling in such a way that the conductivity of
the macroscopic system was low, g5 1. At g5 1, owing to
inelastic electron ± electron scattering, the linear dependence
g�T � was obtained in [20] in a wide temperature range. The
dependence changes to the exponential one at T5 e 2=C,
whereC is the capacitance of ametal grain. Our results are not
in agreement with the predictions of this theory. Firstly, in
our case g�T � is weaker than linear dependence. Secondly, it
is observed atT5 e 2=C, because the Coulomb energy for our
samples e 2=2C �15 ± 25 K. This means that the model of
metal lakes coupled by weak tunneling junctions cannot
explain the low conductivity of the lattice of the Sinai
billiards. The effects of Coulomb blockade are not mani-
fested in the experiment, because one observes no features in
g�Vg� dependence. So, we have to assume that at g5 1 the
coupling between the billiards is stronger than that provided
by tunneling. The behavior of the lattice in the magnetic field
supports this assumption. In Figure 3 one can see the
Shubnikov ± de Haas oscillations which give the electron
density in the lattice saddle points connecting the billiards. It
coincides with the density determined from the Hall effect
measurements that should give the concentration in these
points [21]. The electron density in these points changes
weakly with the strong change of g. It decreases only by
about 30%while g drops by a factor of 30, and its magnitude,
equal to 4:1� 1010 cmÿ2, is only three times less than NS

inside the billiard even for the state with the lowest value of g.
This means that the Fermi level in the saddle point lies several
meV above the barrier at g5 1, and an electron should move
ballistically through the `bottleneck' to go fromone billiard to
another. The behavior of commensurability peak and of
NMR supports this picture. Hence, we come to a paradox-
ical conclusion that 2D lattice of Sinai billiards coupled via
conducting `bottleneck' can have very low conductivity,
g5 1, but simultaneously exhibits the properties typical of
metallic ballistic systems rather than of insulators. This
conclusion is in contradiction with the standard picture of
metal ± insulator transition in 2D systems. It should be noted

that percolation supports this fact even stronger because it
leads to quasi-one-dimensionality. Let us discuss possible
reasons for the situation and consider it from the weak
localization side at first. The transition from the weak to
strong localization, caused, for example, by the decrease of
temperature, should be accompanied by the increase of the
phase coherence length. As a consequence, a number of
localized trajectories should increase until all the trajectories
become localized at T � 0. In the systems under study it can
be somewhat hampered, since an electron can loose the phase
coherence inside a billiard before it leaves for the other
billiard through the `bottleneck'. A simple estimation gives
for the dwell-time of the electron inside a billiard t � 10ÿ8 s.
The collimation effects can only increase this time. The
estimation shows that t can be larger than the time of phase
coherence, which is of the order of tj � 10ÿ9 s at 40 mK. This
means that even at the lowest available temperature an
electron can loose the phase coherence on the length scale
L � d. Then the resistance is the classical sum of the
resistances of individual billiards, which can yield any value
of g. The situation discussed is to some extent similar to that
considered in Ref. [20]. In our system, the quantum dots are
connected by the conducting `bottleneck' instead of the
tunnel barrier as in Ref. [20]. Obviously, it should lead to the
weaker temperature dependence of the conductivity, that is
just observed in our experiments. Nevertheless, it is not clear
what happens at T! 0, because the Coulomb blockade
effects are not observed in our case. The description of the
system from the strong localization side is complicated,
because one can not start from the ground state of electron
in the well, for it represents a multilevel system with the large
(�100) number of electrons. In any case the description of 2D
lattice of coupled Sinai billiards and the phenomena described
in the present paper is a challenge to the theory of quantum
transport in the condensed matter.
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Chaotic quantum transport in superlattices

T M Fromhold, A A Krokhin, P B Wilkinson,
A E Belyaev, C R Tench, S Bujkiewicz, F W Sheard,
L Eaves, M Henini

Abstract. We report a new type of quantum chaotic system in
which the classical Hamiltonian originates from the intrinsi-
cally quantum mechanical nature of the device. The system is a
semiconductor superlattice in a magnetic field. The energy ±
momentum dispersion curves can be used to calculate semi-
classical orbits for electrons confined to a single miniband.
When a magnetic field is applied along the superlattice axis
(x-direction), the electrons perform Bloch oscillations along the
axis with cyclotron motion in the orthogonal plane. But when
the magnetic field is tilted away from the x-direction, the orbits
are chaotic, and have a spatial width along the superlattice axis,
which is much larger than the amplitude of the Bloch
oscillations. This is because the tilted field transfers momen-
tum between the x- and z-directions, thereby delocalizing the
electron path. This type of chaotic dynamics is fundamentally
different to that identified in our previous studies of double ±
barrier resonant tunneling diodes. We investigate the relation
between the orbits of the effective Hamiltonian, and the
quantum states of the superlattice. In the regime of strong
chaos, the wave functions have a highly diffuse structure which
extends across many periods of the superlattice, just like the
corresponding classical orbits. This chaos-induced delocaliza-
tion increases the current flow through real devices. By
contrast, in the stable domain the electron orbits remain
localized along the paths of particular quasi-periodic orbits.
We use theoretical and experimental current ± voltage curves to
show how the onset of chaos manifests itself in the transport
properties of two- and three-terminal superlattice structures,
and identify current oscillations associated with classical
resonances. We also consider analogies with ultra-cold atoms
in an optical lattice with a tilted harmonic trap.

We investigate the semiclassical motion of electrons confined
to the lowest miniband of a GaAs/(AlGa)As superlattice with
a highmagnetic field. Tilting themagnetic field away from the
superlattice axis induces a transition from stable regular
motion to chaotic dynamics which have an intrinsically
quantum-mechanical origin associated with the miniband
dispersion relation. The onset of chaos delocalizes the semi-
classical orbits and corresponding quantized eigenstates. We

use a classical kinetic formalism to calculate the electron drift
velocity versus applied bias voltage, and find that chaos-
induced orbital delocalization can produce a large increase in
the electrical conductivity.

Most experimental studies of the quantum properties of
systems with chaotic classical dynamics have been performed
either on atoms or on low-dimensional semiconductor
structures [1]. The first experiments were performed on
highly-excited hydrogenic atoms in a magnetic field, and
revealed periodic fluctuations in the photo-absorption spec-
tra, associated with unstable periodic electron paths [2, 3].
These orbits modulate the energy level density, and produce
`scarred' wave functions in which the probability density is
concentrated along the classical path [4, 5]. More recently,
ultra-cold atoms in a phase-modulated optical lattice, formed
using two counter-propagating laser beams to set up an
electromagnetic standing wave [6], have provided experimen-
tal evidence for dynamical localization in a quantum-
mechanical `kicked rotor' [7]. In semiconductor physics,
chaotic electron transport has been explored in two-dimen-
sional quantum dots [1, 8, 9], antidot arrays [10], and in
resonant tunneling diodes (RTDs) [1, 11 ± 19]. The RTDs
contain a square potential well, in which electrons follow
chaotic classical paths when a tilted magnetic field is applied
[1, 11 ± 19]. In the regime of strong chaos, scarred states in the
well generate series of resonant peaks in measured tunneling
characteristics [12, 15].

In this paper, we consider how semiconductor super-
lattices (SLs) with a tilted magnetic field can be used to
provide a new type of quantum chaotic system that is
accessible to experiment. In contrast to previous structures
that have been used to study quantum chaos, the effective
classical Hamiltonian for electron motion in the SLs has an
intrinsically quantum-mechanical origin associated with the
electronic energy bands. For low electric fields, SLs have well-
defined minibands. The energy ±wavevector dispersion rela-
tions define an effective Hamiltonian that determines semi-
classical [20] orbits for electrons confined to a single mini-
band. Our calculations for this system show that tilting an
applied magnetic field B at an angle y to the SL axis induces a
transition from stable to chaotic classical motion. The onset
of chaos delocalizes both the classical orbits and the
corresponding quantum wave functions, and thereby
increases the electron drift velocity.

The potential energy of an electron in a SL structure is
schematically shown in Fig. 1. Here we consider GaAs/
(AlGa)As SLs containing barriers of width b � 1:25 nm and
wells of width w � 9:5 nm. The SL period a � b� w. The Al
fraction is taken to be either 0.3, for which the miniband
width D � 26 meV, or 1, which gives D � 8 meV. We have
investigated electron transport in the first miniband of the SL,
using a tight-binding approximation for the energy ±wave-
vector dispersion relation

E�k� � D�1ÿ cos kxa�
2

� �h2�k2y � k2z�
2m�

;

wherem�=0.07me is the electron effectivemass formotion in
the �y; z� plane. The E�k� relation defines an effective Hamil-
tonian for electron motion in electric and magnetic fields that
are small enough to preserve the miniband structure. This
Hamiltonian is obtained from E�k� by adding the electro-
static potential energy due to the electric field F � �ÿF; 0; 0�
and making the substitution �hk � p! p� eA � m�v, where
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