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Some signatures of quantum chaos on dirty
superconductors

F Zhou

Abstract. The Anderson theory of dirty superconductivity was
established a few years after the discovery of the BCS wave
function. Disregarding the rich properties in the one-particle
energy spectrum in dirty limit, the theory claimed that the
ground state condensate is translationally invariant and free
from Toulouse type of frustrations. This theory also set down
the foundation of dirty superconductivity in the presence of
external fields.

In this talk, I demonstrate the failure of the Anderson theory
in amorphous superconducting films in general and its connec-
tion with Wigner — Dyson surmise. I will discuss the Chandra-
sekar — Glogston limit in which the nodes in one-particle wave
functions are shown to result in a novel superconducting glass
phase. I will also discuss why nature has tolerated the failure.

1. Introduction

Disordered superconductors have been studied long ago [1],
right after the discovery of BCS wave functions. It was shown
that the ground-state-condensate wave function is homoge-
neous and the critical temperature remains unchanged in the
presence of weak nonmagnetic disorder. To derive this dirty
superconductor theory, one has to assume that (i) the effective
interaction constant in the Cooperon channel remains
unchanged when a clean superconductor is disordered,
(ii) the condensate wave function is translationally invariant,
and (iii) the time reversal symmetry is preserved.

The first assumption, though is not true in the thin film
limit where the Coulomb interaction in Cooperon channel
can be greatly enhanced, is valid in the bulk limit [2]. We will
assume its validity because it does not affect the result
presented in this paper as far as the renormalized interaction
constant is still negative.

The second assumption is concerned with the translation
invariance of the pairing wave functions. The translation
invariance is not a generic symmetry of the original
Hamiltonian in the presence of disorder. In principle, one
has to deal with the Gor’kov — Eliashberg equations written in
terms of exact Green’s functions (or exact eigenstates) in the
presence of given impurity potentials. Practically, following
Abrikosov and Gor’kov, an impurity average is taken in the
course of studying dirty superconductivity [3]. The sample-
specific quantum interference effect which is of the same
origin as Wigner—Dyson statistics does not survive this
averaging and is not taken into account. And the second
assumption is true only after the impurity average is taken in
the semiclassical limit.

Consequences of sample-specific quantum interference
effects which break the translation invariance is one of the
subjects of this paper. In a noninteracting electron system, the
energy spectrum in a disordered mesoscopic sample was
shown to exhibit Wigner — Dyson statistics, which is univer-
sal, only dependent on the symmetry of the Hamiltonian [4].
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For an open sample, the fluctuation of number of levels 6N
within the energy band of Thouless energy E. is of order of
unity,
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for a 2D film, where the corresponding average number of
levels (N) = L?> dvgE. = G, with vy being the average density
of states at the Fermi surface. E. = D/L*(Thouless energy),
L is the length of the sample, D = vg//3 is the diffusion
constant of the film, v is the Fermi velocity, / is the elastic
mean free path, ff is a factor of order unity depending on the
symmetry of the Hamiltonian,

G =kidl (2)

is the dimensionless conductance of the 2D normal metal in
units of e?/f, kg is Fermi wavelength and the brackets ()
denote averaging over realizations of random potential.

The transport in disordered mesoscopic systems is
governed by UCF (universal conductance fluctuation)
theory [5, 6]. The conductance exhibits sample-specific
fluctuations, with amplitude e?/A, independent of the
average conductance of the sample [5, 6]. More generally,
any physical quantity in a mesoscopic sample consists of an
ensemble average part and a sample-specific part due to
quantum interference. We will see this is also true for
superconductors with properly chosen ‘mesoscopic scales’.

The third aspect of Anderson theory for a dirty super-
conductor is the absence of spontaneous time-reversal symme-
try breaking, that is, the stability of a BCS state with respect to
possible frustrations caused by quantum chaos, even when /is
much shorter than the coherence length. This issue will be
addressed in this article, in connection with nodes in the
spatial dependence of exchange interactions and the distribu-
tion function of the exchange interactions.

Dirty superconductor theory also lays down the founda-
tion for dirty superconductivity in the presence of external
magnetic fields: both orbital effects and Zeemann effects were
studied in the same approximation. The last two assumptions
were, to certain extent, taken for granted and generalized to
some limits where they become false. While they are generally
invalid in thin film limit, even in the bulk limit, they cease to
be true at certain magnetic field. It is the purpose of this work
to explore novel phases in dirty superconductors as signatures
of quantum chaos.

Finally I want to remark that unlike in the noninteract-
ing metal where the mesoscopic physics is relevant only in a
finite sample smaller than the dephasing length, in the
presence of off-diagonal long-range order, it reveals itself in
the thermodynamic limit. One example is a superconductor
in a magnetic field close to the upper critical field H,,, where
the magnetic field dependence of the superconducting critical
temperature is determined by the mesoscopic fluctuations [7].
In general, the mesoscopic effects are not only relevant in a
disordered superconductor but also vital to the global phase
rigidity.

In this paper I consider the case, where the magnetic
field is parallel to the thin superconducting film and the
main contribution to the suppression of superconductivity
by the magnetic field is due to Zeeman splitting of electron
spin energy levels. To simplify the situation I should focus
on the case when the transition is a second order one; results
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can be generalized to the case of first order transitions. For
a detail derivation of the results presented here, I should
refer to the original papers [8 — 10], on which these materials
are based. Specifically, I will discuss signatures of dirty
superconductivity along 7 = 0 axis and those along H =0
axis.

2. Stochastic Ginzburg—Landau equations

The signatures of quantum chaos on dirty superconductor
can be studied by introducing stochastic sources to Gor’kov
equation; when it is close to a critical field, one can derive a
stochastic Ginzburg—Landau equation, with the effective
temperature of the stochastic sources given by the dimension-
less conductance introduced before.

When A(H,r) < Ay (4o denotes the order parameter in
zero field at zero temperature), we make an expansion of the
Gor’kov equation in terms of A(r) and the gradient. As a
result, we get
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where A is the vector potential of external perpendicular
magnetic field. & = +/D/4o. The kernel 3K°(r,r') is of
stochastic nature. The difference between Eqn 3 and the
conventional Ginzburg—Landau equation is the third term
in Eqn 3 which accounts for mesoscopic fluctuations of the
kernel K(r,r'). It is precisely this term, which at high
magnetic fields leads to the random sign of superfluid density.
We introduce a correlator

C(ry, )51, 15) = (BK° (11, 1)) 3K (12, 15)) . 4)
The large-distance asymptotics of the correlation function in
Eqn 4 takes the form:
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There are two kinds of sources in the equation corresponding
to two signatures of quantum chaos in dirty superconductiv-
ity. The short-range term stands for the fluctuations of local
density of states; they are largely responsible for the
nucleation of mesoscopic pairing states above T,. The long-
range term, whose origin will be discussed in great detail,
leads to frustrations.

3. Two signatures of quantum chaos

3.1 Signature 1: nucleation of mesoscopic pairing states
Let me start with the first signature. Employing the perturba-
tion theory with respect to 8K°(r,r'), from Eqn 3 we get an
expression for the correlation function of the mesoscopic
fluctuations of the superconducting order parameter
3A(r; H) = A(r; H) — (A(H)):
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It follows from Eqn 6 that the amplitude of the fluctuations of
the order parameter in the two-dimensional case is almost
independent of H, but the average order parameter decreases
with H. As a result, perturbation theory holds as long as
(A(H))/Ag = \/(H? — H)/H? > G~'. The other feature in
Eqn 6 is that the correlation length for the mesoscopic
pairing fluctuations gets longer and longer as the critical
point is approached.

One of the consequences of the mechanism discussed
above is the instability of the spin-polarized disordered Fermi
liquid well above the critical magnetic field. In the regions
where the spin-polarization energy cost to form supercon-
ducting pairing state is much lower than the average energy
cost, the normal metal with 4 = 0 becomes unstable. As a
result, above the critical field H?, the superconducting pairing
correlations are established at mesoscopic scales in the
different regions in the normal metal and couple with each
other via exchange interactions of random signs. This
argument was presented in our paper [§].

What is the probability to find regions where the super-
conducting pairing states are formed at mesoscopic scales at
H > H? At high magnetic fields the statistics of these pairing
states can be studied with the help of the generalized
Ginzburg— Landau equation, which is valid when H — H? is
small compared with H° and when the spatial variation of the
pairing wave function 4(r) over distance & is negligible.

Equation (3) is a nonlinear equation in terms of A(r), with
a nonlocal 8K°(r,r') potential originating from the oscilla-
tions of the wave functions of Cooper pairs. These are the
generic features of strongly correlated mesoscopic systems.
The nonlocal structure of the potential in Eqn (3) leads to the
superconducting glass state.

At H— H° > H?/G?, the optimal configurations can be
written as

Ar) = 3 A, (), jdrmr)nﬁ(r) X up. (7)

Note that #(r) introduced in this way is dimensionless. The
total energy of such a configuration consists of cross terms
corresponding to the coupling between different droplets.
The coupling between the droplets decays as the distance
increases. When the size of the droplets is much smaller than
the distance between them, the typical magnitude of the
coupling between different droplets is much smaller than
that of the coupling within one droplet. We are going to
neglect such terms in the estimate of the probability of the
droplets in the leading order of o(L?/L?). The main results are
presented below.
Shape of droplet:

HO 1/2
n() = nOLe), Li= & ( - _cm) ,

1, satisfies the dimensionless saddle point equation
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where B, 4% are the dimensionless quantities of order of unity
depending on the details of 5,(y):

- J dyn,(0)(=V3 + (),

= J dy1 dy| dy2 dy)
x C1, v, ) ) 0 ns ()ng (v2) -

Typical amplitude of 4:
The distribution function of the amplitude of the order
parameter 4 in a droplet can be written as
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3.2 Signature 2: random exchange and frustrations

The second signature is concerned with the exchange
interaction between different droplets, which deserves spe-
cial attention. Though the coupling between droplets does not
affect the probability of finding one droplet, it determines the
global phase rigidity. The typical coupling between a and f§
droplet is determined by the long-range stochastic term. In
the limit Ly > L¢ we obtain the variance of the coupling

Pe(47) = (12)
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This suggests that the ground state of these coupled meso-
scopic pairing states will exhibit glassy behavior in this limit,
or superconducting glass state.

The existence of random Josephson coupling in the
presence of a parallel magnetic field is a consequence of the
Pauli spin polarization. Consider, for example, a granular
superconductor, with superconducting grains embedded
inside a noninteracting disordered polarized liquid. An
electron with spin up has a different kinetic energy than an
electron with spin down on the Fermi surface because of the
Pauli spin polarization. As a result, the pairing wave function
oscillates and develops nodes in its spatial dependence:

(13)
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This leads to the sign oscillations of the Josephson coupling
with a period vp/ugH, which is much longer than the Fermi

wavelength. The positions of these nodes in the spatial
dependence of the coupling can be shifted in random
directions when impurities are present. When L2/I>
ve/ugH, ¢ is much larger than unity, and the sign of the
coupling becomes unpredictable for different impurity con-
figurations. In this limit, the Josephson coupling averaged
over impurity configurations is exponentially small,
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while the typical amplitude of the coupling decays as L™2.
Therefore, when the magnetic field increases, only the
position of the maximum of the distribution function moves
towards zero, while the width of the distribution function
barely changes. This results in the superconducting glass
state. It is interesting to note that correlation effect in the
presence of localized impurities can also lead to random sign
of exchange interactions [11, 12].

4. Some aspects of transport

For a frustrated XY model, transport is not well understood.
Phenomenlogically, we can take a hydrodynamical point of
view developed by Andreev, and also by Halperin— Saslow.
Then the dynamics in the long wavelength limit is determined
by two macroscopic variables: (i) @ which characterizes the
deviation of local phase of the order parameter from the
ground state value 6, (due to frustration, the time reversal
symmetry is broken at mean field level and 6, is a random
quantity); (ii) u which is the local chemical potential. They
form a pair of conjugate variables. Without taking into
account the motion between different energy minima, the
system supports gapless sound-like waves, undamped at zero
frequency limit. In this approximation, the conductance is
infinity.

Motions between the different valleys are present at finite
temperature under the general belief that the distribution
function of barriers separating these different valleys is
smooth around zero. Therefore the low-temperature depen-
dence of conductance is completely determined by the energy
barriers within k7. An estimate shows that

o Dy 1, 1 717
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Here op, is the Drude conductivity; Dy is the diffusion
constant of phase 0 and v, is the ‘sound velocity’. The 72
dependence of 1, is obtained using the thermal activation
formula: one T'is from the number of available barriers within
kT, and the other T is from thermally activated transition
between barriers: 1/Ep is the slope of the distribution
function of the energy barriers around the zero energy.

This hydrodynamic approach, though far from complete,
at least demonstrates the possibility of having anomalous
temperature dependence of the conductance of the frustrated
system under consideration. It is different from both an
insulator and a superconductor. I am not going to pursue
further.

For a finite sample, when gate voltages are applied, the
mesoscopic fluctuations in Eqn (3) start to oscillate. Such
oscillations should manifest themselves in the gate-voltage
fingerprint experiment: the conductance as a function of gate
voltage exhibits sample-specific fluctuations, with amplitude
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equal to the normal sample conductance. The conductance
fluctuation due to pairing correlations can also much exceed
the value of UCF, as discovered in Ref. [10].

One should recall that for noninteracting system, the
amplitude of the conductance fluctuation is of order of e /7
at T = 0 and becomes less than e?// when the temperature is
higher than Et [5, 6]. The above statement about mesoscopic
fluctuations of the conductance remains true in weakly
correlated electron systems, and most of strongly correlated
systems encountered, which could be fractional-quantum-
Hall systems.

In the presence of pairing correlations, mesoscopic
fluctuations of conductance can greatly exceed e?/#, the
scale of UCF. To proceed further, one has to express the
conductivity of a given sample above T as

O'X,x.:a—&—So—l—SoxAﬁ,

da represents the contributions from Aslamazov— Larkin and
Maki—Thompson corrections due to thermal fluctuations. It
is divergent as the temperature approaches T.. Correspond-
ingly, the mesoscopic fluctuations of the conductivity oM
therefore consist of two parts: one from the fluctuations of ¢
and the other from those of da.

A detailed derivation was discussed in Ref. [10]. We
present here the main results of the calculations.
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when L < ¢(T). Here § o« max{In(L/¢(T)), 1}.

Equations (16), (17) are valid as far as dcM < 80 < a.
Following Eqns (16), (17), mesoscopic fluctuations of con-
ductance can be much larger than e /h. For instance, for a 2D
film of the size of &(T), at the temperature 7 — T, ~ T./g>
when 8g/0 ~ 1,
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is parametrically larger than UCF in normal metals.

The anomalous fluctuations can be probed in experiments
where resistances are measured at different gate voltages. Let
us consider a 2D film where a gate voltage is applied to the top
of the film with capacitance C. The electric field induced by
the gate is normal to the film and is screened over a Debye
screening length ry = (ezv)fl/ 2. One finally obtains the gate
voltage dependence of the mesoscopic fluctuations:

(BN (V) = 32 (V2))?)
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where F(x) < x at x < 1 and of order of unity when x > 1.
Following Eqn (19), in this case, the characteristic gate
voltage V, at which 8¢ (V,) are correlated is ¢gTL?*t/er}C.
Mesoscopic fluctuations discussed here are also sensitive to
external magnetic fields. The other possibility to observe the

(19)

anomalous mesoscopic fluctuations of transport coefficients
is to measure the conductance during different thermal
cycles.

5. Discussion

We show the existence of a novel superconducting glass phase
in disordered thin films in Glogston limit. The statistics of
mesoscopic pairing states in the superconducting glass phase
is universal and determined only by the sheet conductance. It
is a direct consequence of Wigner — Dyson statistics of single-
particle energy spectrum.

The mechanism discussed in this paper is distinct from the
effect of inhomogeneity of impurity concentration, or
classical pinning effect on vortex lattices. First of all, in the
present case, the magnetic field couples only with spins and
the wave functions are real (as far as the impurity-averaged
condensate wave function is concerned); the time reversal
symmetry is broken spontaneously. For classical pinning
effects on vortex lattices, the time reversal symmetry is
broken by the applied perpendicular magnetic field. More-
over, fluctuations of local quantities like mean free path can
lead to inhomogeneous states but do not lead to spontaneous
time-reversal symmetry breaking. The glass state discussed in
this paper is due to random signs of long-range exchange
interaction, which is purely of mesoscopic nature. Finally, the
response of the state discussed here is determined universally
by Thouless energy of the size of the coherence length and the
response of a pinned vortex glass strongly depends on the
range and strength of the classical pinning potential. For
amorphous films where the impurity potential is perfectly
screened and in the absence of granularities, the classical
pinning effect is weak; the mesoscopic effects dominate in this
limit.
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