Issues

 / 

2023

 / 

March

  

Reviews of topical problems


Optical nanoresonators

 
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The review presents an analysis and generalization of classical and most modern approaches to the description and development of the principles of operation of open optical nanoresonators, that is, resonators, all sizes of which are smaller than the resonant wavelength of radiation in vacuum. Particular attention is paid to the physics of such phenomena as bound states in a continuum, anapole states, supercavity modes, and perfect nonradiating modes with extremely high quality factors and localizations of electromagnetic fields. An analysis of the optical properties of natural oscillations in nanoresonators made of metamaterials is also presented in the review. The effects considered in this review, besides being of fundamental import, can also find applications in the development of optical nanoantennas, nanolasers, biosensors, photovoltaic devices, and nonlinear nanophotonics.

Fulltext pdf (5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.02.039153
Keywords: nanoresonators, quasi-normal modes, perfect nonradiating modes, supercavity modes, anapole states, bound states in a continuum, Platonic solids, quality factor, nanoantennas, nanolasers, metamaterials, Mie resonances, plasmon resonances, biosensors
PACS: 03.50.De, 32.50.+d, 32.70.Jz, 42.25.−p, 42.50.Pq, 42.79.−e, 78.67.−n, 78.67.Pt (all)
DOI: 10.3367/UFNe.2022.02.039153
URL: https://ufn.ru/en/articles/2023/3/b/
001133619700001
2-s2.0-85182600686
2023PhyU...66..263K
Citation: Klimov V V "Optical nanoresonators" Phys. Usp. 66 263–287 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, August 2021, revised: 17th, January 2022, 11th, February 2022

Оригинал: Климов В В «Оптические нанорезонаторы» УФН 193 279–304 (2023); DOI: 10.3367/UFNr.2022.02.039153

References (195) ↓ Cited by (5) Similar articles (20)

  1. Klimov V V Nanoplasmonics (Singapore: Pan Stanford Publ., 2014)
  2. Noginov M A et al Nature 460 1110 (2009)
  3. Ge D et al Nat. Commun. 11 3414 (2020)
  4. Kwon S-H et al Nano Lett. 10 3679 (2010)
  5. Celebrano M et al Nat. Nanotechnol. 10 412 (2015)
  6. Biagioni P, Huang J-S, Hecht B Rep. Prog. Phys. 75 024402 (2012)
  7. Yang Z-J et al Phys. Rep. 701 1 (2017)
  8. Paniagua-Dom&iacte;nguez R et al J. Appl. Phys. 126 150401 (2019)
  9. Krasnok A E et al JETP Lett. 94 593 (2011); Krasnok A E et al Pis’ma Zh. Eksp. Teor. Fiz. 94 635 (2011)
  10. Krasnok A E et al Opt. Express 20 20599 (2012)
  11. Krasnok A E et al Phys. Usp. 56 539 (2013); Krasnok A E et al Usp. Fiz. Nauk 183 561 (2013)
  12. Rocco D et al J. Opt. Soc. Am. B 34 1918 (2017)
  13. Sinev I et al ACS Photon. 7 680 (2020)
  14. Luk’yanchuk B S et al ACS Photon. 2 993 (2015)
  15. Manna U et al J. Appl. Phys. 127 033101 (2020)
  16. Baranov D G et al Optica 4 814 (2017)
  17. Kivshar Yu Natl. Sci. Rev. 5 144 (2018)
  18. Koshelev K et al Nanophotonics 8 725 (2019)
  19. Yang Y, Bozhevolnyi S I Nanotechnology 30 204001 (2019)
  20. "Physicists Trap Light in Nanoresonators for Record Time". ITMO News, 17.01.2020, https://physics.itmo.ru/en/news/physicists-trap-light-nanoresonators-record-time
  21. Koshelev K et al Science 367 288 (2020)
  22. Tiguntseva E et al ACS Nano 14 8149 (2020)
  23. Zenin V A et al ACS Photon. 7 1067 (2020)
  24. Melik-Gaykazyan E et al Nano Lett. 21 1765 (2021)
  25. Mylnikov V et al ACS Nano 14 7338 (2020)
  26. Hwang M-S et al Nanophotonics 10 3599 (2021)
  27. Sadrieva Z et al Phys. Rev. B 100 115303 (2019)
  28. Bogdanov A A et al Adv. Photon. 1 016001 (2019)
  29. Carletti L et al Phys. Rev. Res. 1 023016 (2019)
  30. Carletti L et al Phys. Rev. Lett. 121 33903 (2018)
  31. Parker J A et al Phys. Rev. Lett. 124 097402 (2020)
  32. Luk’yanchuk B et al Phys. Rev. A 95 063820 (2017)
  33. Miroshnichenko A E et al Nat. Commun. 6 8069 (2015)
  34. Luk’yanchuk B et al Philos. Trans. R. Soc. A 375 20160069 (2017)
  35. Baryshnikova K V et al Adv. Opt. Mater. 7 1801350 (2019)
  36. Wei L et al Optica 3 799 (2016)
  37. Rybin M V et al Phys. Rev. Lett. 119 243901 (2017)
  38. Odit M et al Adv. Mater. 33 2003804 (2021)
  39. Klimov V Opt. Lett. 45 4300 (2020)
  40. Klimov V Photonics 9 1005 (2022)
  41. Klimov V V, Guzatov D V Photonics 10 248 (2023)
  42. Schwefel H G L et al Optical Microcavities (Advanced Series in Applied Physics) Vol. 5 (Ed. K Vahala) (Singapore: World Scientific, 2004) p. 415
  43. Jackson J D Classical Electrodynamics (New York: Wiley, 1975)
  44. Courant R, Hilbert D Methoden Der Mathematischen Physik (Berlin: Springer, 1924); Translated into English, Courant R, Hilbert D Methods Of Mathematical Physics Vol. 1 (Hoboken, NJ: John Wiley and Sons, 1989); Translated into Russian, Courant R, Hilbert D Metody Matematicheskoi Fiziki Vol. 1 (Moscow-Leningrad: GTTI, 1933)
  45. de Broglie L Problèmes De Propagations Guidées Des Ondes électromagn étiques (Paris: Gauthier-Villars, 1941); Translated into Russian, de Broglie L Elektromagnitnye Volny V Volnovodakh I Polykh Rezonatorakh (Moscow: GIIL, 1948)
  46. Weinstein L A Open Resonators And Open Waveguides (Boulder, CO: Golem Press, 1969); Translated into Russian, Weinstein L A Otkrytye Rezonatory I Otkrytye Volnovody (Moscow: Sov. Radio, 1966)
  47. Richtmyer R D J. Appl. Phys. 10 391 (1939)
  48. Affolter P, Eliasson B IEEE Trans. Microwave Theory Tech. 21 573 (1973)
  49. Christopoulos T et al Opt. Express 27 14505 (2019)
  50. Wu T, Gurioli M, Lalanne P ACS Photon. 8 1522 (2021)
  51. Bohren C F, Huffman D R Absorption And Scattering Of Light By Small Particles (New York: Wiley, 1983)
  52. Kristensen P T, Van Vlack C, Hughes S AIP Conf. Proc. 1398 100 (2011)
  53. Kristensen P T, Hughes S ACS Photon. 1 2 (2014)
  54. Sauvan C et al Phys. Rev. Lett. 110 237401 (2013)
  55. Lalanne P et al Laser Photon. Rev. 12 1700113 (2018)
  56. Muljarov E A, Langbein W Phys. Rev. B 94 235438 (2016)
  57. Coccioli R et al IEE Proc. Optoelectron. 145 391 (1998)
  58. Doost M B, Langbein W, Muljarov E A Phys. Rev. A 87 043827 (2013)
  59. Sauvan C Opt. Express 29 8268 (2021)
  60. Dmitriev V I, Zakharov E V Metod Integral’nykh Uravnenii V Vychislitel’noi Elektrodinamike (Method Of Integral Equations In Computational Electrodynamics) (Moscow: MAKS Press, 2008)
  61. Bulygin V S et al IET Microwaves Antennas Propag. 9 1186 (2015)
  62. Sukharevsky I O et al Opt. Eng. 58 (1) 016115 (2019)
  63. Davidovich M V Izv. Saratov. Univ. Novaya Ser. Ser. Fiz. 8 (1) 3 (2008)
  64. Voitovich N N, Katsenelenbaum B Z, Sivov A N Sov. Phys. Usp. 19 337 (1976); Voitovich N N, Katsenelenbaum B Z, Sivov A N Usp. Fiz. Nauk 118 709 (1976)
  65. Agranovich M S, Katsenelenbaum B Z, Sivov A N, Voitovich N N Generalized Method Of Eigenoscillations In Diffraction Theory (Berlin: Wiley-VCH, 1999); Translated from Russian, Voitovich N N, Katsenelenbaum B Z, Sivov A N Obobshchennyi Metod Sobstvennykh Kolebanii V Teorii Difraktsii (Moscow: Nauka, 1977)
  66. Klimov V V, Ducloy M, Letokhov V S Quantum Electron. 31 569 (2001); Klimov V V, Ducloy M, Letokhov V S Kvantovaya Elektron. 31 569 (2001)
  67. von Neumann J, Wigner E P Phys. Z. 30 465 (1929)
  68. Zel’dovich Ia B Sov. Phys. JETP 6 1184 (1958); Zel’dovich Ia B Zh. Eksp. Teor. Fiz. 33 1531 (1957)
  69. Gladyshev S, Frizyuk K, Bogdanov A Phys. Rev. B 102 075103 (2020)
  70. Wu T et al Phys. Rev. A 101 011803 (2020)
  71. Lord Rayleigh F R S Philos. Mag. 5 44 28 (1897)
  72. Stevenson A F J. Appl. Phys. 24 1134 (1953)
  73. Stevenson A F J. Appl. Phys. 24 1143 (1953)
  74. van Bladel J IEEE Trans. Microwave Theory Tech. 23 199 (1975)
  75. Mongia R K, Bhartia P Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 4 230 (1994)
  76. Brillouin L J. Phys. Radium 3 373 (1932)
  77. Muljarov E A, Langbein W, Zimmermann R Europhys. Lett. 92 50010 (2010)
  78. COMSOL, https://www.comsol.ru/
  79. Electromagnetic Systems Modeling. CST Studio Suite. Dassault Systèmes, https://www.3ds.com/products-services/simulia/products/cst-studio-suite/electromagnetic-systems/
  80. Bai Q et al Opt. Express 21 27371 (2013)
  81. Yan W, Faggiani R, Lalanne P Phys. Rev. B 97 205422 (2018)
  82. Mie G Ann. Physik 25 377 (1908), by new numbering Vol. 330
  83. Luk’yanchuk B S et al J. Opt. A 9 S294 (2007)
  84. Tribelsky M I, Luk’yanchuk B S Phys. Rev. Lett. 97 263902 (2006)
  85. Tribelsky M I, Miroshnichenko A E Phys. Usp. 65 40 (2022); Tribelsky M I, Miroshnichenko A E Usp. Fiz. Nauk 192 45 (2022)
  86. Bashevoy M V, Fedotov V A, Zheludev N I Opt. Express 13 8372 (2005)
  87. Noh H et al Phys. Rev. Lett. 108 186805 (2012)
  88. Proskurin A, Bogdanov A, Baranov D Laser Photon. Rev. 15 2000430 (2021)
  89. Smythe W R Static And Dynamic Electricity 3rd ed. (New York: McGraw-Hill, 1968); Translated into Russian, Smythe W R Elektrostatika I Elektrodinamika (Moscow: IL, 1954)
  90. Guzatov D V, Klimov V V, Pikhota M Laser Phys. 20 85 (2010)
  91. Guzatov D V, Klimov V V Chem. Phys. Lett. 412 341 (2005)
  92. Hobson E W The Theory Of Spherical And Ellipsoidal Harmonics (Cambridge: The Univ. Press, 1931)
  93. Faggiani R et al ACS Photon. 4 897 (2017)
  94. Mårsell E et al Nano Lett. 15 6601 (2015)
  95. Klimov V V, Guzatov D V Phys. Rev. B 75 024303 (2007)
  96. Klimov V V Phys. Usp. 51 839 (2008); Klimov V V Usp. Fiz. Nauk 178 875 (2008)
  97. Klimov V V, Guzatov D V Appl. Phys. A 89 305 (2007)
  98. Nordlander P et al Nano Lett. 4 899 (2004)
  99. Prodan E, Nordlander P J. Chem. Phys. 120 5444 (2004)
  100. Guzatov D V, Klimov V V New J. Phys. 13 053034 (2011)
  101. Watson J D et al Molecular Biology Of The Gene 7th ed. (Boston: Pearson, 2014)
  102. Pal S et al Angew. Chem. 122 2760 (2010); Pal S et al Angew. Chem. Int. Ed. 49 2700 (2010)
  103. Zheng J et al Nano Lett. 6 1502 (2006)
  104. Kuzyk A et al Nature 483 311 (2012)
  105. Mastroianni A J, Claridge S A, Alivisatos A P J. Am. Chem. Soc. 131 8455 (2009)
  106. Klein W P et al Nano Lett. 13 3850 (2013)
  107. Ding B et al J. Am. Chem. Soc. 132 3248 (2010)
  108. Roller E-M et al Nano Lett. 15 1368 (2015)
  109. Roller E-M et al Nat. Phys. 13 761 (2017)
  110. Klimov V V, Sharonov G V Quantum Electron. 50 237 (2020); Klimov V V, Sharonov G V Kvantovaya Elektron. 50 237 (2020)
  111. Many V et al Nanophotonics 8 549 (2019)
  112. Il’chenko M E et al Dielektricheskie Rezonatory (Dielectric Resonators, Ed.M E Il’chenko) (Moscow: Radio i Svyaz’, 1989)
  113. Luk K M, Leung K W (Eds) Dielectric Resonator Antennas (Antennas Series) 1st ed. (Baldock: Research Studies Press Ltd, 2002)
  114. Vahala K Nature 424 839 (2003)
  115. Kuznetsov A I et al Science 354 aag2472 (2016)
  116. Sager O, Tisi F Proc. IEEE 56 1593 (1968)
  117. Gastine M, Courtois L, Dormann J L IEEE Trans. Microwave Theory Tech. 15 694 (1967)
  118. Martin R J, Tatam R P J. Mod. Opt. 41 1445 (1994)
  119. Filonov D S et al Appl. Phys. Lett. 100 201113 (2012)
  120. Kuznetsov A I et al Sci. Rep. 2 492 (2012)
  121. Voshchinnikov N V, Farafonov V G Astrophys. Space Sci. 204 19 (1993)
  122. Komarov I V, Ponomarev L I, Slavyanov S Yu Sferoidal’nye I Kulonovskie Sferoidal’nye Funktsii (Spheroidal And Coulomb Spheroidal Functions) (Moscow: Nauka, 1976)
  123. Lai H M et al J. Opt. Soc. Am. B 8 1962 (1991)
  124. Luk’yanchuk B S et al ACS Photon. 2 993 (2015)
  125. Bulgakov E, Pichugin K, Sadreev A Phys. Rev. A 104 053507 (2021); Bulgakov E, Pichugin K, Sadreev A arXiv:2107.13719
  126. Kishk A, Glisson A W, Junker G P PIER 33 97 (2001)
  127. Bulygin V S et al "Axially symmetric modeling of dielectric pillbox resonators" 2012 14th Intern. Conf. on Transparent Optical Networks, ICTON (Piscataway, NJ: IEEE, 2012), Tu.B6.3
  128. Rybin M V, Limonov M F Phys. Usp. 62 823 (2019); Rybin M V, Limonov M F Usp. Fiz. Nauk 189 881 (2019)
  129. Krasikov S et al Phys. Rev. Appl. 15 024052 (2021)
  130. Ruan Z, Fan S Phys. Rev. Lett. 105 013901 (2010)
  131. Qian C et al Phys. Rev. Lett. 122 063901 (2019)
  132. Qian C et al ACS Photon. 5 1506 (2018)
  133. Bulgakov E, Pichugin K, Sadreev A Photonics 8 49 (2021)
  134. Klimov V V Phys. Usp. 62 1058 (2019); Klimov V V Usp. Fiz. Nauk 189 1131 (2019)
  135. Lu Y et al Opto-Electron Adv. 5 210014 (2022)
  136. Veselago V G Sov. Phys. Usp. 10 509 (1968); Veselago V G Usp. Fiz. Nauk 92 517 (1967)
  137. Shelby R A, Smith D R, Schultz S Science 292 77 (2001)
  138. Shelby R A et al Appl. Phys. Lett. 78 489 (2001)
  139. Remnev M A, Klimov V V Phys. Usp. 61 157 (2018); Remnev M A, Klimov V V Usp. Fiz. Nauk 188 169 (2018)
  140. Veselago V G Phys. Usp. 54 1161 (2011); Veselago V G Usp. Fiz. Nauk 181 1201 (2011)
  141. Kildishev A V, Shalaev V M Phys. Usp. 54 53 (2011); Kildishev A V, Shalaev V M Usp. Fiz. Nauk 181 59 (2011)
  142. Klimov V V Opt. Commun. 211 183 (2002)
  143. Klimov V V Phys. Usp. 64 990 (2021); Klimov V V Usp. Fiz. Nauk 191 1044 (2021)
  144. Klimov V arXiv:2102.12690
  145. Bokut’ B V, Serdyukov A N, Fedorov F I Sov. Phys. Crystallogr. 15 871 (1971); Bokut’ B V, Serdyukov A N, Fedorov F I Kristallografiya 15 1002 (1970)
  146. Lindell I V et al Electromagnetic Waves In Chiral And Bi-isotropic Media (Boston: Artech House, 1994)
  147. Pendry J B Science 306 1353 (2004)
  148. Zhang S et al Phys. Rev. Lett. 102 023901 (2009)
  149. Dong J et al Opt. Express. 17 14172 (2009)
  150. "Chiral metamaterials" US 8271241, B2, September 18, 2012
  151. ’Chiral metamaterials’, US 8,271.241 B2. Google Patents, http://www.google.ch/patents/US8271241
  152. Wongkasem N, Akyurtlu A, Marx K PIER 63 295 (2006)
  153. Klimov V V, Guzatov D V, Ducloy M Europhys. Lett. 97 47004 (2012)
  154. Klimov V V, Guzatov D V Phys. Usp. 55 1054 (2012); Klimov V V, Guzatov D V Usp. Fiz. Nauk 182 1130 (2012)
  155. Bohren C F Chem. Phys. Lett. 29 458 (1974)
  156. Guzatov D V, Klimov V V New J. Phys. 14 123009 (2012)
  157. Klimov V V et al Opt. Express 22 18564 (2014)
  158. Klimov V, Guzatov D Singular And Chiral Nanoplasmonics (Eds N Zheludev, S Boriskina) (Singapore: Pan Stanford Publ., 2014) p. 121
  159. Guzatov D V, Klimov V V Quantum Electron. 45 250 (2015); Guzatov D V, Klimov V V Kvantovaya Elektron. 45 250 (2015)
  160. Guzatov D V et al Opt. Express 25 6036 (2017)
  161. Wu C et al Phys. Rev. X 4 021015 (2014)
  162. Davidovich M V Phys. Usp. 62 1173 (2019); Davidovich M V Usp. Fiz. Nauk 189 1249 (2019)
  163. Roth J, Dignam M J J. Opt. Soc. Am. 63 308 (1973)
  164. Totero Gongora J S et al Nat. Commun. 8 15535 (2017)
  165. Wan M et al Appl. Phys. Lett. 110 031103 (2017)
  166. Schwartz J J, Stavrakis S, Quake S R Nat. Nanotechnol. 5 127 (2010)
  167. Staude I et al ACS Photon. 2 172 (2015)
  168. Krasnok A E et al Laser Photon. Rev. 9 385 (2015)
  169. Ee H-S et al Nano Lett. 15 1759 (2015)
  170. Singh M et al Nanoscale 7 1424 (2015)
  171. Caldarola M et al Nat. Commun. 6 7915 (2015)
  172. Szenes A et al Sci. Rep. 7 13845 (2017)
  173. Elshaari A W et al Nat. Photon. 14 285 (2020)
  174. Brongersma M L, Cui Y, Fan S Nat. Mater. 13 451 (2014)
  175. Kim S J et al Nat. Commun. 6 7591 (2015)
  176. Sousa-Castillo A et al Nano Energy 37 118 (2017)
  177. Lee K-T et al Sci. Rep. 7 10640 (2017)
  178. Vismara R et al Opt. Express 27 A967 (2019)
  179. García-Guirado J et al Nano Lett. 20 585 (2020)
  180. Yavas O et al Nano Lett. 17 4421 (2017)
  181. Bontempi N et al Nanoscale 9 4972 (2017)
  182. Yang Y et al Nat. Commun. 16 5753 (2014)
  183. Tittl A et al Science 360 1105 (2018)
  184. Rodionov S A, Remnev M A, Klimov V V Sens. Bio-Sens. Res. 22 100263 (2019)
  185. Klimov V V et al J. Phys. D 50 285101 (2017)
  186. Mariani S et al Opt. Lett. 39 3062 (2014)
  187. Kuo P S, Bravo-Abad J, Solomon G S Nat. Commun. 5 3109 (2014)
  188. Gigli C et al Front. Phys. 7 221 (2019)
  189. Li G-C et al Nat. Commun. 12 4326 (2021)
  190. Shcherbakov M R et al Nano Lett. 14 6488 (2014)
  191. Grinblat G et al Nano Lett. 16 4635 (2016)
  192. Grinblat G et al ACS Nano 11 953 (2017)
  193. Evlyukhin A B et al Nano Lett. 12 3749 (2012)
  194. Staude I et al ACS Nano 7 7824 (2013)
  195. Tonkaev P et al Appl. Phys. Lett. 118 091104 (2021)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions