Issues

 / 

2017

 / 

February

  

Instruments and methods of investigation


Possibilities of gas phase synthesis of diamond structures from mixtures of hydrogen and hydrocarbons


Kutateladze Institute of Thermophysics, Siberian Division of the Russian Academy of Sciences, prosp. Akad. Lavrenteva 1 , Novosibirsk, 630090, Russian Federation

To date there is no universally recognized notions on diamond structure formation from gas phase. The set of fragments, determining this process is distinguished for different methods of activation. The information on elementary processes of interaction of hydrogen and hydrocarbon molecules with surface for activation and deposition can be found in the literature, but it is scarce. Scientific problems of thermal activation relate not only to carbon structure synthesis; the description of nonequilibrium processes in channel flows with heterogeneous chemical reactions has unquestionable importance. In this review the modern state of studies of interaction of hydrogen and methane molecule and their fragments with high temperature tungsten surfaces and diamond surfaces at the temperature close to 1300 K is considered, and accessible results are presented.

Fulltext pdf (530 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.04.037794
Keywords: gas-jet synthesis of diamond structures, atom--surface interaction
PACS: 34.35.+a, 68.43.−h, 81.05.ug (all)
DOI: 10.3367/UFNe.2016.04.037794
URL: https://ufn.ru/en/articles/2017/2/d/
000401039000004
2-s2.0-85019136727
2017PhyU...60..179R
Citation: Rebrov A K "Possibilities of gas phase synthesis of diamond structures from mixtures of hydrogen and hydrocarbons" Phys. Usp. 60 179–186 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, April 2016, revised: 20th, April 2016, 27th, April 2016

Оригинал: Ребров А К «Возможности газофазного синтеза алмазных структур» УФН 187 193–200 (2017); DOI: 10.3367/UFNr.2016.04.037794

References (58) ↓ Cited by (35) Similar articles (13)

  1. Leipunskii O I Uspekhi Khimii 8 1519 (1939)
  2. Bundy F P et al. Nature 176 51 (1955)
  3. Angus J C, Will H A, Stanko W S J. Appl. Phys. 39 2915 (1968)
  4. Derjaguin B V et al. J. Cryst. Growth 2 380 (1968)
  5. Matsumoto S et al. Jpn. J. Appl. Phys. 21 L183 (1982)
  6. Emelyanov A, Rebrov A, Yudin I Phys. Status Solidi A 211 2279 (2014)
  7. Kurihara K et al. Appl. Phys. Lett. 52 437 (1988)
  8. Kamo M et al. J. Cryst. Growth 62 642 (1983)
  9. Sedov V S i dr. Fundamental’nye Problemy Radioelektronnogo Priborostroeniya 10 (1 - 2) 79 (2010)
  10. Vikharev A L i dr. Fiz. Tekh. Poluprovodn. 46 274 (2012); Vikharev A L et al. Semiconductors 46 263 (2012)
  11. Hirose Y, Amanuma S, Komaki K J. Appl. Phys. 68 6401 (1990)
  12. Konov V I et al. Appl. Phys. A 66 575 (1998)
  13. Dandy D S, Coltrin M E Diamond Films Handbook (Eds J Asmussen, D K Reinhard, Eds J Asmussen, D K Reinhard) (New York: Marcel Dekker, 2002), Ch. 4
  14. May P W Phil. Trans. R. Soc. Lond. A 358 473 (2000)
  15. Brenner D W, Shenderova O A Phil. Trans. R. Soc. Lond. A 373 20140139 (2015)
  16. Vavilov V S Usp. Fiz. Nauk 167 17 (1997); Vavilov V S Phys. Usp. 40 15 (1997)
  17. Khmel’nitskii R A Usp. Fiz. Nauk 185 143 (2015); Khmelnitskii R A Phys. Usp. 58 134 (2015)
  18. Langmuir I "Surface chemistry" Chem. Rev. 13 147 (1933), Nobel Lecture, December 14, 1932
  19. Langmuir I, Mackay G M J J. Am. Chem. Soc. 36 1708 (1914)
  20. Withrow S P Ph.D. Thesis (Urbana, IL: Univ. of Illinois, 1975)
  21. Zheng W, Gallagher A Surf. Sci. 600 2207 (2006)
  22. Goodman D W, Ray R R Sandia Report 97185 (Albuquerque, NM: Sandia Natl. Lab., 1986)
  23. Johnson D F, Carter E A J. Mater. Res. 25 315 (2010)
  24. Sommer M, Smith F W J. Mater. Res. 5 2433 (1990)
  25. Otsuka T, Ihara M, Komiyama H J. Appl. Phys. 77 893 (1995)
  26. Qi X, Chen Z, Wang G J. Mater. Sci. Technol. 19 235 (2003)
  27. Smith J N (Jr.), Fite W L J. Chem. Phys. 37 898 (1962)
  28. Koshmarov Yu A Konspekt Lektsii Po Kursu "Teploperedacha" (M.: MAI, 1972) p. 164-166
  29. May P W et al. Appl. Surf. Sci. 68 299 (1993)
  30. Eckert M, Neyts E, Bogaerts A J. Phys. D 41 032006 (2008)
  31. Winters H F J. Chem. Phys. 62 2454 (1975)
  32. German E D, Sheintuch M J. Phys. Chem. C 117 22811 (2013)
  33. Rettner C T, Pfnür H E, Auerbach D J Phys. Rev. Lett. 54 2716 (1985)
  34. Rettner C T, Pfnür H E, Auerbach D J J. Chem. Phys. 84 4163 (1986)
  35. Choudhary T V, Aksoylu E, Goodman D W Catalysis Rev. Sci. Eng. 45 151 (2003)
  36. Suárez M P, Löffler D G React. Kinet. Catal. Lett. 23 (1-2) 191 (1983)
  37. Goodwin D G, Gavillet G G J. Appl. Phys. 68 6393 (1990)
  38. Zumbach V et al. J. Chem. Phys. 107 5918 (1997)
  39. Olivas-Martínez M et al. Model. Simul. Mater. Sci. Eng. 15 237 (2007)
  40. Battaile C C, Srolovitz D J Annu. Rev. Mater. Res. 32 297 (2002)
  41. Kurihara K, Sasaki K, Kawarda M Mater. Manufact. Proc. 6 241 (1991)
  42. Yu B W, Girshick S L J. Appl. Phys. 75 3914 (1994)
  43. Dandy D S, Coltrin M E J. Mater. Res. 10 1993 (1995)
  44. Reeve S V, Weimer W A, Dandy D S J. Mater. Res. 11 695 (1996)
  45. Mankelevich Yu A, May P W Diamond Related Mater. 17 1021 (2008)
  46. Schwaederlé L et al. Plasma Proces. Polymers 12 764 (2015)
  47. von Keudell A, Meier M, Schwarz-Selinger T Appl. Phys. A 72 551 (2001)
  48. von Keudell A Thin Solid Films 402 1 (2002)
  49. Mutsukura N, Inoue S, Machi Y J. Appl. Phys. 72 43 (1992)
  50. Meier M, Preuss R, Dose V New J. Phys. 5 133 (2003)
  51. Alfonso D R, Ulloa S E, Brenner D W Phys. Rev. B 49 4948 (1994)
  52. Deák P et al. Appl. Phys. Lett. 90 051503 (2007)
  53. Krasnoperov L N et al. J. Phys. Chem. 97 11787 (1993)
  54. Träskelin P, Saresoja O, Nordlund K J. Nucl. Mater. 375 270 (2008)
  55. Eckert M, Neyts E, Bogaerts A Chem. Vapor Deposition 14 213 (2008)
  56. Kang K N Dissertation (Baton Rouge, LA: Louisiana State Univ., 2012)
  57. Rebrov A, Yudin I Phys. Status Solidi C 12 886 (2015)
  58. Plotnikov M Yu, Shkarupa E V Vaccum 129 31 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions