Issues

 / 

2014

 / 

January

  

Methodological notes


Phase patterns of dispersive waves from moving localized sources

 a,  a, b, c
a Federal State Budget Organization, Research and Production Association Taifun, Lenina av. 82, Obninsk, Kaluga Region, 249020, Russian Federation
b A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation
c Obninsk Institute for Nuclear Power Engineering, Obninsk, Russian Federation

A general approach is proposed within which the phase structure of wave perturbations caused by a moving localized source can be described based on the wave dispersion law alone. Using this approach, a simple analytic expression for phase surfaces is obtained, on the basis of which the phase patterns of capillary-gravity waves are studied, as are the structure of ocean wave trains in the wake of a tropical hurricane and the systems of leeward waves in the Earth’s atmosphere.

Fulltext pdf (704 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201401d.0089
PACS: 47.10.−g, 47.35.−i, 47.35.Bb, 47.35.Pq (all)
DOI: 10.3367/UFNe.0184.201401d.0089
URL: https://ufn.ru/en/articles/2014/1/d/
000334343500004
2-s2.0-84898873421
2014PhyU...57...80S
Citation: Svirkunov P N, Kalashnik M V "Phase patterns of dispersive waves from moving localized sources" Phys. Usp. 57 80–91 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 12th, July 2013, revised: 19th, September 2013, 6th, September 2013

Оригинал: Свиркунов П Н, Калашник М В «Фазовые картины диспергирующих волн от движущихся локализованных источников» УФН 184 89–100 (2014); DOI: 10.3367/UFNr.0184.201401d.0089

References (22) Cited by (45) Similar articles (13) ↓

  1. B.Ya. Shmerlin, M.V. Kalashnik “Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures56 473–485 (2013)
  2. A.A. Abrashkin, E.N. Pelinovsky “Gerstner waves and their generalizations in hydrodynamics and geophysics65 453–467 (2022)
  3. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosm67 80–90 (2024)
  4. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wave61 307–312 (2018)
  5. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and application53 91–98 (2010)
  6. D.S. Agafontsev, E.A. Kuznetsov et alCompressible vortex structures and their role in the onset of hydrodynamic turbulence65 189–208 (2022)
  7. A.M. Gaifullin, V.V. Zhvick “Laminar submerged jets of incompressible fluid at large Reynolds numbers66 1142–1153 (2023)
  8. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic model57 453–460 (2014)
  9. E.N. Rumanov “Critical phenomena far from equilibrium56 93–102 (2013)
  10. A.G. Bershadskii “Large-scale fractal structure in laboratory turbulence, astrophysics, and the ocean33 (12) 1073–1075 (1990)
  11. K.A. Barsukov, V.N. Popov “On superluminal light spots39 1181–1188 (1996)
  12. B.M. Bolotovskii, S.N. Stolyarov “Reflection of light from a moving mirror and related problems32 813–827 (1989)
  13. M.A. Miller, Yu.M. Sorokin, N.S. Stepanov “Covariance of Maxwell equations and comparison of electrodynamic systems20 264–272 (1977)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions