Issues

 / 

2013

 / 

October

  

From the current literature


Transport mechanisms of electrons and holes in dielectric films

 a,  b
a Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Koptyuga 1, Novosibirsk, 630090, Russian Federation
b Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrent'eva 13, Novosibirsk, 630090, Russian Federation

Electron and hole transport mechanisms in amorphous silicon oxide, silicon nitride and aluminum oxide, dielectric materials of high relevance to silicon device technology, are reviewed. It is established that the widely accepted Frenkel model provides a formal description of transport in trap-containing insulators, but to obtain quantitative agreement, nonphysical model parameters should be introduced. It is shown that the multiphonon ionization of traps is a good model to consistently describe charge transport in insulators with traps.

Fulltext pdf (740 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201310h.1099
PACS: 72.20.Ht, 72.20.Jv, 72.80.Sk, 73.40.Sx (all)
DOI: 10.3367/UFNe.0183.201310h.1099
URL: https://ufn.ru/en/articles/2013/10/c/
000329313100003
2013PhyU...56..999N
Citation: Nasyrov K A, Gritsenko V A "Transport mechanisms of electrons and holes in dielectric films" Phys. Usp. 56 999–1012 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, March 2013, 11th, June 2013

Оригинал: Насыров К А, Гриценко В А «Механизмы переноса электронов и дырок в диэлектрических плёнках» УФН 183 1099–1114 (2013); DOI: 10.3367/UFNr.0183.201310h.1099

References (80) Cited by (54) ↓ Similar articles (3)

  1. Bhat Z, Ahsan Sh A IEEE Trans. Electron Devices 71 1812 (2024)
  2. Perevalov T V, Islamov D R et al 124 (4) (2024)
  3. Zhou Zh, Liu Y et al Scripta Materialia 243 115968 (2024)
  4. Huang R, Wang H et al ACS Appl. Electron. Mater. 6 1365 (2024)
  5. Sun H, Wang Yu et al ACS Appl. Mater. Interfaces 16 12821 (2024)
  6. Gismatulin A A, Odintsov D S et al Chemical Physics Letters 840 141140 (2024)
  7. Kang S S, Yang J et al 122 (4) (2023)
  8. Koryazhkina M N, Filatov D O et al Nanomaterials 13 2082 (2023)
  9. Vedeneev A S, Rylkov V V et al J. Commun. Technol. Electron. 68 920 (2023)
  10. Lin Ya, Li F, Li Zh Rare Met. 42 2545 (2023)
  11. Permyakov D, Strogonov A Electronics: STB Russia 228 184 (2023)
  12. Gabriel’s K S, Kalinin Yu E et al Tech. Phys. 68 S430 (2023)
  13. Vedeneev A S, Rylkov V V et al Radiotehnika I èlektronika 68 827 (2023)
  14. Yang M, Wang Sh et al Advanced Materials 35 (30) (2023)
  15. Odintsov D S, Shundrina I K et al J Struct Chem 63 1811 (2022)
  16. Rusinowicz M, Volpi F et al Adv Funct Materials 32 (47) (2022)
  17. Zalyalov T M, Islamov D R 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM), (2022) p. 48
  18. Liu K, Wang R et al Semicond. Sci. Technol. 37 075005 (2022)
  19. Makeev V V, Teplov G S, Sattarov P Sh Elektronnaya Tekhnika. Seriya 3. Mikroelektronika (4) 34 (2022)
  20. Iskhakzay R M Kh, Kruchinin V N et al Russ Microelectron 51 24 (2022)
  21. Nikolaev S N, Vedeneev A S et al J. Commun. Technol. Electron. 66 1196 (2021)
  22. González Y, Hadj Y A et al 119 (13) (2021)
  23. Perevalov T V, Gismatulin A A et al Physica Status Solidi (a) 218 (4) (2021)
  24. Gritsenko V A, Gismatulin A A, Orlov O M Nanotechnol Russia 16 722 (2021)
  25. Şahin M F, Taşcı E et al Physica B: Condensed Matter 614 413029 (2021)
  26. Perevalov T V, Gismatulin A A et al 127 (19) (2020)
  27. Voronkovskii V A, Perevalov T V et al Journal Of Non-Crystalline Solids 546 120256 (2020)
  28. Gritsenko V A, Gismatulin A A 117 (14) (2020)
  29. Masin F, Meneghini M et al 115 (5) (2019)
  30. Gritsenko V A, Novikov Yu N, Chin A Mater. Res. Express 6 116409 (2019)
  31. Gismatulin A A, Gritsenko V A et al 115 (25) (2019)
  32. Yakunin A N, Aban’shin N P et al J. Commun. Technol. Electron. 64 83 (2019)
  33. 425 (2019)
  34. Stockman A, Masin F et al IEEE Trans. Electron Devices 65 5365 (2018)
  35. Birmpiliotis D, Koutsoureli M et al Microelectronics Reliability 88-90 840 (2018)
  36. Karpov S Y, Zakheim D A et al Semicond. Sci. Technol. 33 025009 (2018)
  37. Islamov D R, Gritsenko V A et al Phys. Solid State 60 2050 (2018)
  38. Tikhov S V, Gorshkov O N et al Semiconductors 52 1540 (2018)
  39. Andreeva N, Ivanov A, Petrov A 8 (2) (2018)
  40. Perevalov T V, Gritsenko V A et al Nanotechnology 29 264001 (2018)
  41. Tikhov S V, Mikhaylov A N et al Microelectronic Engineering 187-188 134 (2018)
  42. Andreev D, Bondarenko G et al KEM 781 47 (2018)
  43. Karpushin A A, Gritsenko V A Jetp Lett. 108 127 (2018)
  44. Islamov D R, Gritsenko V A, Chin A Optoelectron.Instrument.Proc. 53 184 (2017)
  45. Gritsenko V A Uspekhi Fizicheskikh Nauk 187 971 (2017)
  46. Shvets V A, Kruchinin V N, Gritsenko V A Opt. Spectrosc. 123 728 (2017)
  47. Iljinas A, Marcinauskas L, Stankus V Applied Surface Science 381 6 (2016)
  48. Kostina S S, Hanson M P et al ACS Photonics 3 1877 (2016)
  49. Aban’shin N P, Loginov A P et al 2016 29th International Vacuum Nanoelectronics Conference (IVNC), (2016) p. 1
  50. Alekseeva L, Nabatame T et al Jpn. J. Appl. Phys. 55 08PB02 (2016)
  51. Aban’shin N P, Avetisyan Yu A et al Tech. Phys. Lett. 42 509 (2016)
  52. Iljinas A, Stankus V Applied Surface Science 381 2 (2016)
  53. Iljinas A, Stankus V Thin Solid Films 601 106 (2016)
  54. Gritsenko V A, Perevalov T V, Islamov D R Physics Reports 613 1 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions