Reviews of topical problems

Elastic scattering of hadrons

Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia

Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18–25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

Text can be downloaded in Russian. English translation is available on IOP Science.
Fulltext: pdf (1 MB)
PACS: 13.75.Cs, 13.85.Dz (all)
DOI: 10.3367/UFNe.0183.201301a.0003
Citation: Dremin I M "Elastic scattering of hadrons" Phys. Usp. 56 3–28 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, June 2012, 28th, June 2012

:    « c » 183 3–32 (2013); DOI: 10.3367/UFNr.0183.201301a.0003

References (260) Cited by (31) Similar articles (20)

© 1918–2017 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions