Issues

 / 

2008

 / 

October

  

Reviews of topical problems


Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma

 a,  b, a
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

Two fundamental mechanisms — the Cherenkov effect and anomalous Doppler effect — underlying the emission by an electron during its superluminal motion in medium are considered. Cherenkov emission induced by a single electron and a small electron bunch is spontaneous. In the course of spontaneous Cherenkov emission, the translational motion of an electron is slowed down and the radiation energy grows linearly with time. As the number of radiating electrons increases, Cherenkov emission becomes stimulated. Stimulated Cherenkov emission represents a resonance beam instability. This emission process is accompanied by longitudinal electron bunching in the beam or by the breaking of an electron bunch into smaller bunches, in which case the radiation energy grows exponentially with time. In terms of the longitudinal size $L_e$ of the electron bunch there is a transition region $\lambda < {L_e} < \lambda\delta_0^{-1}$ between the spontaneous and stimulated Cherenkov effects, where $\lambda$ is the average radiation wavelength, and $\delta_0$ is the dimensionless (in units of the radiation frequency) growth rate of the Cherenkov beam instability. The range to the left of this region is dominated by spontaneous emission, whereas the range to the right of this region is dominated by stimulated emission. In contrast to the Vavilov — Cherenkov effect, the anomalous Doppler effect should always (even for a single electron) be considered as stimulated, because it can only be explained by accounting for the reverse action of the radiation field on the moving electron. During stimulated emission in conditions where anomalous Doppler effect shows itself, an electron is slowed down and spins up; in this case, the radiation energy grows exponentially with time.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.1070/PU2008v051n10ABEH006634
PACS: 41.60.−m, 52.35.−g, 52.40.Mj (all)
DOI: 10.1070/PU2008v051n10ABEH006634
URL: https://ufn.ru/en/articles/2008/10/b/
000262714300002
2-s2.0-67849099230
2008PhyU...51..989K
Citation: Kuzelev M V, Rukhadze A A "Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma" Phys. Usp. 51 989–1018 (2008)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Кузелев М В, Рухадзе А А «Спонтанное и вынужденное излучение электрона, электронного сгустка и электронного пучка в плазме» УФН 178 1025–1055 (2008); DOI: 10.3367/UFNr.0178.200810b.1025

References (37) Cited by (18) Similar articles (20) ↓

  1. Ya.B. Zeldovich, A.A. Ruzmaikin “The hydromagnetic dynamo as the source of planetary, solar, and galactic magnetism30 494–506 (1987)
  2. P.K. Shukla, B. Eliasson “Nonlinear aspects of quantum plasma physics53 51–76 (2010)
  3. L.S. Bogdankevich, M.V. Kuzelev, A.A. Rukhadze “Plasma microwave electronics24 1–16 (1981)
  4. V.M. Arutyunyan, S.G. Oganesyan “The stimulated Cherenkov effect37 1005–1039 (1994)
  5. F.G. Bass, V.M. Yakovenko “Theory of radiation from a charge passing through an electrically inhomogeneous medium8 420–444 (1965)
  6. L.S. Bogdankevich, A.A. Rukhadze “Stability of relativistic electron beams in a Plasma and the problem of critical currents14 163–179 (1971)
  7. A.A. Rukhadze, V.P. Silin “Method of geometrical optics in the electrodynamics of an inhomogeneous plasma7 209–229 (1964)
  8. M.L. Ter-Mikhaelyan “High energy electromagnetic processes in amorphous and inhomogeneous media46 1231–1252 (2003)
  9. K.Yu. Platonov, G.D. Fleishman “Transition radiation in media with random inhomogeneities45 235–291 (2002)
  10. M. Birau, M.A. Krasil’nikov et alProblems in the theory of relativistic plasma microwave electronics40 975–992 (1997)
  11. A.I. Nikishov, V.I. Ritus “Gravitational radiation of systems and the role of their force field53 1093–1122 (2010)
  12. B.M. Bolotovskii, E.A. Galst’yan “Diffraction and diffraction radiation43 755–775 (2000)
  13. V.V. Zaitsev, A.V. Stepanov “Coronal magnetic loops51 1123–1160 (2008)
  14. V.P. Krainov, B.M. Smirnov, M.B. Smirnov “Femtosecond excitation of cluster beams50 907–931 (2007)
  15. N.A. Vinokurov, E.B. Levichev “Undulators and wigglers for production of radiation and other applications58 850–871 (2015)
  16. L.I. Men’shikov “Superradiance and related phenomena42 107 (1999)
  17. I.I. Metelskii, V.F. Kovalev, V.Yu. Bychenkov “Relativistic-nonlinear resonant absorption and generation of harmonics of electromagnetic radiation in an inhomogeneous plasma67 (5) (2024)
  18. D.F. Alferov, Yu.A. Bashmakov, P.A. Cherenkov “Radiation from relativistic electrons in a magnetic undulator32 200–227 (1989)
  19. B.M. Bolotovskii, G.V. Voskresenskii “Emission from charged particles in periodic structures11 143–162 (1968)
  20. I.M. Frank “Vavilov-Cherenkov radiation for electric and magnetic multipoles27 772–785 (1984)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions