Issues

 / 

2005

 / 

July

  



Geometric theory of defects

A description of dislocation and disclination defects in terms of the Riemann-Cartan geometry is given, with the curvature and torsion tensors interpreted as the surface densities of the Frank and Burgers vectors, respectively. A new free-energy expression describing the static distribution of defects is presented and equations of nonlinear elasticity theory are used to specify the coordinate system. Application of the Lorentz gauge leads to equations for the principal chiral SO(3) field. In the defect-free case, the geometric model reduces to elasticity theory for the displacement vector field and to a principal chiral SO(3)-field model for the spin structure. As illustrated by the example of a wedge dislocation, elasticity theory reproduces only the linear approximation of the geometric theory of defects. It is shown that the equations of asymmetric elasticity theory for Cosserat media can also be naturally incorporated into the geometric theory as gauge conditions. As an application of the theory, phonon scattering on a wedge dislocation is considered. The energy spectrum of impurities in the field of a wedge dislocation is also discussed.

Fulltext pdf (394 KB)
Fulltext is also available at DOI: 10.1070/PU2005v048n07ABEH002027
PACS: 02.40.−k, 46.05.+b, 61.72.Lk, 63.20.Mt (all)
DOI: 10.1070/PU2005v048n07ABEH002027
URL: https://ufn.ru/en/articles/2005/7/b/
000233309400002
2005PhyU...48..675K
Citation: Katanaev M O "Geometric theory of defects" Phys. Usp. 48 675–701 (2005)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Êàòàíàåâ Ì Î «Ãåîìåòðè÷åñêàÿ òåîðèÿ äåôåêòîâ» ÓÔÍ 175 705–733 (2005); DOI: 10.3367/UFNr.0175.200507b.0705

References (100) Cited by (92) ↓

  1. Pranoto S H, Yokota Sh et al Philosophical Magazine 104 321 (2024)
  2. Yajima T, Nagahama H Mathematics And Mechanics Of Solids 29 327 (2024)
  3. Carneiro F L, Ulhoa S C Int. J. Geom. Methods Mod. Phys. 21 (01) (2024)
  4. Alves S S, Cunha M M et al Universe 9 132 (2023)
  5. Iorio A, Pais P J. Phys.: Conf. Ser. 2533 012032 (2023)
  6. Mavromatos N E, Pais P, Iorio A Universe 9 516 (2023)
  7. Candemir N, Özdemir A N Physics Letters A 492 129226 (2023)
  8. Fraerman A A Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 163 822 (2023)
  9. Katanaev M O, Mark A V Universe 9 500 (2023)
  10. Amitani T, Nishida Yu Annals Of Physics 448 169181 (2023)
  11. Crespo M, Casale G, Le Marrec L Lecture Notes In Computer Science Vol. Geometric Science of InformationContinuum Mechanics of Defective Media: An Approach Using Fiber Bundles14072 Chapter 5 (2023) p. 41
  12. Fraerman A A J. Exp. Theor. Phys. 136 734 (2023)
  13. Katanaev M  O Mod. Phys. Lett. A 38 (16n17) (2023)
  14. Fernández N, Pujol P et al Eur. Phys. J. B 96 (6) (2023)
  15. Mustafa O, Algadhi Z Quantum Stud.: Math. Found. 10 263 (2023)
  16. Nguyen V H, Casale G, Le Marrec L Mathematics And Mechanics Of Solids 27 1255 (2022)
  17. Hirano M, Nagahama H Int. J. Geom. Methods Mod. Phys. 19 (10) (2022)
  18. Hudson T, Rindler F Math. Models Methods Appl. Sci. 32 851 (2022)
  19. Manapany A, Moueddene L et al Eur. Phys. J. B 95 (7) (2022)
  20. Carneiro F L, Ulhoa S C, Maluf J W Gravit. Cosmol. 28 352 (2022)
  21. Mark A V J Appl Mech Tech Phy 63 702 (2022)
  22. Pereira L F C, Andrade F M et al Physica E: Low-dimensional Systems And Nanostructures 132 114760 (2021)
  23. Fumeron S, Berche B, Moraes F Liquid Crystals Reviews 9 85 (2021)
  24. Katanaev M O Universe 7 256 (2021)
  25. Chandra P, Coleman P et al Phys. Rev. Research 2 (4) (2020)
  26. Hassanabadi H, Zare S et al EPL 132 60005 (2020)
  27. Ciappina M F, Iorio A et al Phys. Rev. D 101 (3) (2020)
  28. Epstein M, Kupferman R, Maor C Advances In Mechanics And Mathematics Vol. Geometric Continuum MechanicsLimits of Distributed Dislocations in Geometric and Constitutive Paradigms42 Chapter 8 (2020) p. 349
  29. Yajima T, Nagahama H Annalen Der Physik 532 (12) (2020)
  30. Garcia G Q, Porfírio P J et al Nuclear Physics B 950 114853 (2020)
  31. Katanaev M O Mod. Phys. Lett. B 34 2050126 (2020)
  32. Zuev L B, Barannikova S A Metals 10 1446 (2020)
  33. Katanaev M O, Volkov B O Mod. Phys. Lett. B 34 2150012 (2020)
  34. Baimuratov A S, Pereziabova T P et al Opt. Lett. 44 499 (2019)
  35. Gromov A Phys. Rev. Lett. 122 (7) (2019)
  36. Katanaev M O Proc. Steklov Inst. Math. 306 127 (2019)
  37. Katanaev M O, Katanaev M O Trudy Matematicheskogo Instituta Imeni V.A. Steklova 306 139 (2019)
  38. Wang Zh, Xu Ch EPL 126 50005 (2019)
  39. Viana E, Moraes F et al 125 (20) (2019)
  40. Fernández-Núñez I, Bulashenko O J. Opt. 20 045603 (2018)
  41. Yajima T, Yamasaki K, Nagahama H J. Phys. Commun. 2 085008 (2018)
  42. do Nascimento R F, Cogollo D et al Commun. Theor. Phys. 70 817 (2018)
  43. Rojas M, Filgueiras C et al Physics Letters A 382 432 (2018)
  44. Pereziabova T P, Baimuratov A S et al Opt. Spectrosc. 125 684 (2018)
  45. Baimuratov A S, Pereziabova T P et al ACS Nano 12 6203 (2018)
  46. Katanaev M O Proc. Steklov Inst. Math. 301 114 (2018)
  47. Katanaev M O Phys. Part. Nuclei 49 890 (2018)
  48. Cai H, Wang Zh, Ren Zh Class. Quantum Grav. 35 155016 (2018)
  49. Soheibi N, Hamzavi M et al Eur. Phys. J. B 90 (11) (2017)
  50. Baimuratov A S, Pereziabova T P et al Nano Lett. 17 5514 (2017)
  51. Brandão J, Filgueiras C et al J. Phys. Commun. 1 035004 (2017)
  52. Lima A A, Filgueiras C, Moraes F Eur. Phys. J. B 90 (2) (2017)
  53. Fumeron S, Berche B et al Eur. Phys. J. B 90 (5) (2017)
  54. Katanaev M  O Phys. Rev. D 96 (8) (2017)
  55. Malyshev C J Math Sci 213 750 (2016)
  56. Katanaev M O J. Phys. A: Math. Theor. 49 085202 (2016)
  57. Yajima T, Nagahama H Annalen Der Physik 528 845 (2016)
  58. Baimuratov A S, Rukhlenko I D et al Nano Lett. 15 1710 (2015)
  59. Katanaev M O Physics Letters A 379 1544 (2015)
  60. Baimuratov A S, Rukhlenko I D et al Sci Rep 5 (1) (2015)
  61. Shi L, Li H et al Opt. Express 23 25773 (2015)
  62. Filgueiras C, Silva E O Physics Letters A 379 2110 (2015)
  63. Zuev L B Usp. Fiz. Met. 16 35 (2015)
  64. Lima J R F, Brandão J et al Eur. Phys. J. D 68 (4) (2014)
  65. Poux A, Araújo L R S et al Eur. Phys. J. Plus 129 (5) (2014)
  66. Fumeron S, Pereira E, Moraes F Phys. Rev. E 89 (2) (2014)
  67. Lychev S A, Manzhirov A V Journal Of Applied Mathematics And Mechanics 77 421 (2013)
  68. de Lima A G, Poux A et al Eur. Phys. J. B 86 (11) (2013)
  69. Torabi R, Rezaei Z Physics Letters A 377 1668 (2013)
  70. Fumeron S, Pereira E, Moraes F International Journal Of Thermal Sciences 67 64 (2013)
  71. Silva K V R A, de Freitas C F, Filgueiras C Eur. Phys. J. B 86 (4) (2013)
  72. de Lima A A, Filgueiras C Eur. Phys. J. B 85 (12) (2012)
  73. DORIA MAURO M, VARGAS-PAREDES ALFREDO A, HELAYËL-NETO JOSÉ A Mod. Phys. Lett. B 26 1230005 (2012)
  74. Kobelev V Meccanica 47 745 (2012)
  75. Katanaev M O, Mannanov I G P-Adic Num Ultrametr Anal Appl 4 5 (2012)
  76. Katanaev M O, Mannanov I G Phys. Part. Nuclei 43 639 (2012)
  77. Randono A, Hughes T L Phys. Rev. Lett. 106 (16) (2011)
  78. Pereira E, Moraes F Liquid Crystals 38 295 (2011)
  79. Cho Y M, Pak D G Class. Quantum Grav. 28 155008 (2011)
  80. Filgueiras C, de Oliveira B F Annalen Der Physik 523 898 (2011)
  81. Lazar M, Hehl F W Found Phys 40 1298 (2010)
  82. Miklashevich I A Nonlinear Analysis: Real World Applications 10 2939 (2009)
  83. de Berredo-Peixoto G, Katanaev M O 50 (4) (2009)
  84. Baranov S A, Dikusar A I, Gamburg Yu D Surf. Engin. Appl.Electrochem. 44 98 (2008)
  85. TARTAGLIA ANGELO, CAPONE MONICA Int. J. Mod. Phys. D 17 275 (2008)
  86. Silva N A L, Furtado C J. Phys.: Condens. Matter 20 125209 (2008)
  87. Malyshev C J. Phys. A: Math. Theor. 40 10657 (2007)
  88. Mathy C J M, Bais F A Annals Of Physics 322 709 (2007)
  89. de Berredo-Peixoto G, Katanaev M O Phys. Rev. D 75 (2) (2007)
  90. Moura-Melo W A, Pereira A R et al Physics Letters A 360 472 (2007)
  91. Bais F A, Mathy C J M Annals Of Physics 322 552 (2007)
  92. Moreira E S, Oliveira E S Phys. Rev. A 73 (5) (2006)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions