Issues

 / 

2001

 / 

July

  

Reviews of topical problems


Silicon-germanium epilayers: physical fundamentals of growing strained and fully relaxed heterostructures

, ,
Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, prosp. Akad. Lavrenteva 13, Novosibirsk, 630090, Russian Federation

GexSi1-x/Si heterostructures involving two elemental semiconductors are becoming an important element in microelectronics. Their epitaxial growth requires a detailed knowledge of the mechanisms of elastic and plastic deformations in continuous and island films both at the early stages of epitaxy and during the subsequent heat treatment. The present work is a systematic review of current ideas on the fundamental physical mechanisms governing the formation of elastically strained and plastically relaxed GexSi1- x/Si heterocompositions. In particular, the use of compliant and soft substrates and the epitaxial synthesis of nanometer-sized islands (’quantum dots’) are discussed.

Fulltext pdf (618 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n07ABEH000879
PACS: 61.72.Lk, 62.25.+g, 73.40.Kp, 81.15.−z (all)
DOI: 10.1070/PU2001v044n07ABEH000879
URL: https://ufn.ru/en/articles/2001/7/a/
000173467700001
Citation: Bolkhovityanov Yu B, Pchelyakov O P, Chikichev S I "Silicon-germanium epilayers: physical fundamentals of growing strained and fully relaxed heterostructures" Phys. Usp. 44 655–680 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Болховитянов Ю Б, Пчеляков О П, Чикичев С И «Кремний-германиевые эпитаксиальные пленки: физические основы получения напряженных и полностью релаксированных гетероструктур» УФН 171 689–715 (2001); DOI: 10.3367/UFNr.0171.200107a.0689

References (140) Cited by (56) ↓ Similar articles (20)

  1. Kaganer V M J Appl Crystallogr 57 276 (2024)
  2. Zhang Y, Zhou Ch et al 133 (7) (2023)
  3. Tuktamyshev A, Vichi S et al SSRN Journal (2022)
  4. Genath H, Norberg Je et al Thin Solid Films 763 139561 (2022)
  5. Trushin O S, Rudenko K V, Lukichev V F International Conference on Micro- and Nano-Electronics 2021, (2022) p. 1
  6. Tuktamyshev A, Vichi S et al Journal Of Crystal Growth 600 126906 (2022)
  7. Dolbak A E, Zhachuk R A J. Exp. Theor. Phys. 133 44 (2021)
  8. Sreseli O M, Bert N A et al Semiconductors 54 181 (2020)
  9. Shugurov A R, Panin A V Tech. Phys. 65 1881 (2020)
  10. Candussio S, Budkin G V et al Phys. Rev. Materials 3 (5) (2019)
  11. Kovalskiy V A, Eremenko V G et al Applied Surface Science 479 930 (2019)
  12. Magomedov M N Phys. Solid State 61 2145 (2019)
  13. Plusnin N I, Maslov A M Tech. Phys. Lett. 44 187 (2018)
  14. Schulze A, Strakos L et al Nanoscale 10 7058 (2018)
  15. Bukharaev A A, Zvezdin A K et al Uspekhi Fizicheskikh Nauk 188 1288 (2018)
  16. Plyusnin N I Tech. Phys. Lett. 44 980 (2018)
  17. Tregulov V V, Litvinov V G, Ermachikhin A V Semiconductors 52 891 (2018)
  18. Artemyuk V A, Karbivska L I et al Usp. Fiz. Met. 18 235 (2017)
  19. Kaganer V, Ulyanenkova T et al 122 (10) (2017)
  20. Kolotovkina D A, Gutakovskii A K, Bakarov A K Nanotechnol Russia 11 12 (2016)
  21. Sharabani Ya, Shafir I et al IEEE Electron Device Lett. 37 1041 (2016)
  22. Trushin O, Maras E et al Modelling Simul. Mater. Sci. Eng. 24 035007 (2016)
  23. Muslimov A E, Butashin A V et al Crystallogr. Rep. 61 63 (2016)
  24. Maras E, Trushin O et al Computer Physics Communications 205 13 (2016)
  25. Drozdov Yu N, Drozdov M N et al Semiconductors 49 19 (2015)
  26. Benediktovitch A, Feranchuk I, Ulyanenkov A Springer Series In Materials Science Vol. Theoretical Concepts of X-Ray Nanoscale AnalysisX-Ray Diffraction from Crystals with Defects183 Chapter 6 (2014) p. 217
  27. Vengrenovich R D, Ivanskii B V et al Semiconductors 48 783 (2014)
  28. Vasiliev A L, Roddatis V V et al Nanotechnol Russia 8 317 (2013)
  29. Shanygin V Ya, Yafarov R K Tech. Phys. 57 1115 (2012)
  30. Kopp V S, Kaganer V M et al Phys. Rev. B 85 (24) (2012)
  31. Kukushkin S A, Osipov A V KEM 528 145 (2012)
  32. Kaganer V M, Sabelfeld K K Physica Status Solidi (a) 208 2563 (2011)
  33. Trukhanov E M J. Synch. Investig. 4 36 (2010)
  34. Leonhardt D, Sheng J et al Thin Solid Films 518 5920 (2010)
  35. Zinov’ev V A Optoelectron.Instrument.Proc. 45 332 (2009)
  36. Psakhie S G, Rudenskiĭ G E et al Tech. Phys. Lett. 35 217 (2009)
  37. Bolkhovityanov Yu B, Gutakovskii A K et al Semiconductors 42 1 (2008)
  38. Kukushkin S A, Osipov A V Kinet Catal 49 79 (2008)
  39. Khizhnyi V I 34 63 (2008)
  40. Shklyaev A A, Ichikava M Uspekhi Fizicheskikh Nauk 178 139 (2008)
  41. Bolkhovityanov Yu B, Deryabin A S et al Semiconductors 40 319 (2006)
  42. Valakh M Ya, Dzhagan V M et al Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 253 27 (2006)
  43. Klin O, Klipstein P C et al 24 1607 (2006)
  44. Vartanian V, Zollner S et al IEEE Trans. Semicond. Manufact. 19 381 (2006)
  45. Yugay K N, Muravjev A V et al 32 55 (2006)
  46. Pchelyakov O P Phys. Solid State 47 63 (2005)
  47. Bolkhovityanov Yu B, Deryabin A S et al Journal Of Crystal Growth 280 309 (2005)
  48. Vdovin V I, Mil’vidskii M G, Yugova T G Crystallogr. Rep. 50 849 (2005)
  49. Bolkhovityanov Yu B, Deryabin A S et al Thin Solid Films 466 69 (2004)
  50. Yugay K N, Muravjev A B et al J Supercond 17 755 (2004)
  51. Bolkhovityanov Yu B, Deryabin A S et al 96 7665 (2004)
  52. Yugova T G, Mil’vidskii M G, Vdovin V I Phys. Solid State 46 1520 (2004)
  53. Bolkhovityanov Yu B, Pchelyakov O P et al Semiconductors 37 493 (2003)
  54. Carmody M, Lee D et al Journal Of Elec Materi 32 710 (2003)
  55. Novikov P L, Bolkhovityanov Yu B et al Semicond. Sci. Technol. 18 39 (2003)
  56. Kukushkin S A, Osipov A V et al Semiconductors 36 1097 (2002)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions