Issues

 / 

1996

 / 

August

  

From the current literature


Transformations of C60 fullerite under high-pressure high-temperature conditions

 a,  b
a Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation

Depending on pressure-temperature conditions, fullerite crystals can transform as to the well-known carbon phases, graphite and diamond, and to new metastable crystalline and amorphous modifications. The mechanical properties, density and structural data of the latter are reviewed. It is concluded that the crystalline C60 phases possess mechanical characteristics 2-3 times lower than that for the diamond; amorphous states of carbon with a large share of the sp3 -configurations have mechanical properties close to those of the diamond. The analysis of current literature enables us to conclude that the diamond has the highest elastic moduli among the carbon materials studied up to date.

Fulltext pdf (377 KB)
Fulltext is also available at DOI: 10.1070/PU1996v039n08ABEH000163
PACS: 36.40.Ei, 61.46.+w (all)
DOI: 10.1070/PU1996v039n08ABEH000163
URL: https://ufn.ru/en/articles/1996/8/e/
A1996VH30900005
Citation: Brazhkin V V, Lyapin A G "Transformations of C60 fullerite under high-pressure high-temperature conditions" Phys. Usp. 39 837–840 (1996)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бражкин В В, Ляпин А Г «Превращения фуллерита C60 при высоких давлениях и температурах» УФН 166 893–897 (1996); DOI: 10.3367/UFNr.0166.199608e.0893

References (33) Cited by (49) ↓ Similar articles (3)

  1. Khairullina R R, Khusnutdinoff R M Bull. Russ. Acad. Sci. Phys. 87 1637 (2023)
  2. Khairullina R R, Khusnutdinoff R M Izvestiâ Akademii Nauk SSSR. Seriâ Fizičeskaâ 87 1607 (2023)
  3. Bubenchikov A M, Bubenchikov M A et al Eur. Phys. J. Plus 136 (4) (2021)
  4. Bubenchikov M A, Bubenchikov A M et al Physica Status Solidi (a) 218 (5) (2021)
  5. Brazhkin V V Uspekhi Fizicheskikh Nauk 190 561 (2020) [Brazhkin V V Phys.-Usp. 63 523 (2020)]
  6. McMillan P F Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (2019)
  7. Kvashnin A G, Allahyari Z, Oganov A R 126 (4) (2019)
  8. Brazhkin V V, Solozhenko V L 125 (13) (2019)
  9. Dahliah D, Abu-Jafar M S et al Phase Transitions 91 271 (2018)
  10. Belenkov E A, Greshnyakov V A Phys. Solid State 60 1294 (2018)
  11. Kasumov M M, V’yunov O I Tech. Phys. 60 451 (2015)
  12. Khusnutdinoff R M, Mokshin A V, Takhaviev I D Phys. Solid State 57 412 (2015)
  13. Pleshakov V J Appl Crystallogr 47 539 (2014)
  14. Brazkin V, Lyapin A Comprehensive Hard Materials (2014) p. 539
  15. Kozakov A T, Kochur A G et al Journal Of Electron Spectroscopy And Related Phenomena 186 14 (2013)
  16. McMillan P F Comprehensive Inorganic Chemistry II (2013) p. 17
  17. Rekhviashvili S Sh Phys. Solid State 55 1525 (2013)
  18. Brazhkin V V, Lyapin A G J. Superhard Mater. 34 400 (2012)
  19. Ivanovskaya V V, Ivanovskii A L J. Superhard Mater. 32 67 (2010)
  20. Talanov V M, Fedorova N V, Gusarov V V Glass Phys Chem 36 358 (2010)
  21. Shulzhenko A A, Sokolov A N et al J. Superhard Mater. 31 211 (2009)
  22. MATYSINA Z A, ZAGINAICHENKO S Yu et al Hydrogen Materials Science and Chemistry of Carbon Nanomaterials NATO Security Through Science Series A: Chemistry And Biology Chapter 1 (2007) p. 1
  23. MATYSINA Z A, ZAGINAICHENKO S Yu et al Hydrogen Materials Science and Chemistry of Carbon Nanomaterials NATO Security Through Science Series A: Chemistry And Biology Chapter 27 (2007) p. 219
  24. Yakovlev E N, Davydov V A Russ. J. Phys. Chem. 80 1370 (2006)
  25. Drozdova E I, Tchernogorova O P, Potapova I N Russ. Metall. 2006 528 (2006)
  26. Markin A V, Smirnova N N et al Phys. Solid State 48 1016 (2006)
  27. Dmytrenko O P, Kulish N P et al Molecular Crystals And Liquid Crystals 426 187 (2005)
  28. Milyavskiy V V, Utkin A V et al Diamond And Related Materials 14 1920 (2005)
  29. Matysina Z A, Schur D V et al NATO Science Series II: Mathematics, Physics And Chemistry Vol. Hydrogen Materials Science and Chemistry of Carbon NanomaterialsPhase Transformations in Carbon Materials172 Chapter 1 (2004) p. 1
  30. Schur D V, Matysina Z A, Yu Z S NATO Science Series II: Mathematics, Physics And Chemistry Vol. Hydrogen Materials Science and Chemistry of Carbon NanomaterialsHydrogen Solubility in FCC Fullerite172 Chapter 2 (2004) p. 25
  31. Lebedev B V, Markin A V et al Thermochimica Acta 399 99 (2003)
  32. Markin A V, Smirnova N N et al Phys. Solid State 45 802 (2003)
  33. Tikhomirova G V, Babushkin A N Physica Status Solidi (b) 235 360 (2003)
  34. Tikhomirova G V, Babushkin A N Phys. Solid State 44 644 (2002)
  35. Lyapin A G Perspectives of Fullerene Nanotechnology Chapter 17 (2002) p. 199
  36. Brazhkin V V, Glazov A G et al J. Phys.: Condens. Matter 14 10911 (2002)
  37. Brazhkin V V, Lyapin A G et al Jetp Lett. 76 681 (2002)
  38. Brazhkin V V, Lyapin A G, Hemley R J Philosophical Magazine A 82 231 (2002)
  39. Lyapin A G Perspectives of Fullerene Nanotechnology Chapter 17 (2002) p. 199
  40. Vasin A V, Matveeva L A et al Tech. Phys. Lett. 27 918 (2001)
  41. Glazov A G, Mukhamad’yarov V V et al Jetp Lett. 73 552 (2001)
  42. Soifer Ya M, Kobelev N P, Levin V M Journal Of Alloys And Compounds 310 292 (2000)
  43. Lebedev B V, Zhogova K B et al Thermochimica Acta 364 23 (2000)
  44. Schelkacheva T I, Tareyeva E E Phys. Rev. B 61 3143 (2000)
  45. Tareeva E E, Tareeva E E i dr Teor. Mat. Fiz. 121 479 (1999) [Tareeva E E, Shchelkacheva T I Theor Math Phys 121 1666 (1999)]
  46. Pugachev A T, Churakova N P et al 25 220 (1999)
  47. Blank V D, Levin V M et al J. Exp. Theor. Phys. 87 741 (1998)
  48. Brazhkin V V, Lyapin A G et al 84 219 (1998)
  49. Brazhkin V V, Lyapin A G, Popova S V Jetp Lett. 64 802 (1996)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions