Issues

 / 

1988

 / 

January

  

Methodological notes


A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

A description is given of a device that periodically transforms a field from the vacuum state to a pure excited state that corresponds to the propagation of two correlated photons. It employs the phenomenon of parametric scattering, i.e., the emission of pairs of photons by a nonlinear crystal excited by a pulsed coherent pump under phase-matched conditions. In accordance with the well-known Einstein--Podolsky--Rosen gedanken experiment, the device can be used to observe the correlation of either the transverse momenta of the photons (when the two detectors are located in the far-field zone) or their transverse coordinates (when the detectors are in the near-field zone). The device may be of interest in photometry, and also from the methodological point of view as a clear demonstration of the EPR paradox and the complementarity of the transverse coordinate and momentum of a photon.

Fulltext pdf (434 KB)
Fulltext is also available at DOI: 10.1070/PU1988v031n01ABEH002537
PACS: 42.50.Dv, 42.79.Pw (all)
DOI: 10.1070/PU1988v031n01ABEH002537
URL: https://ufn.ru/en/articles/1988/1/f/
Citation: Klyshko D N "A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle" Sov. Phys. Usp. 31 74–85 (1988)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Клышко Д Н «Простой метод приготовления чистых состояний оптического поля, реализации эксперимента Эйнштейна, Подольского, Розена и демонстрации принципа дополнительности» УФН 154 133–152 (1988); DOI: 10.3367/UFNr.0154.198801e.0133

Cited by (123) ↓ Similar articles (17)

  1. Sun M-J Coded Optical Imaging Chapter 8 (2024) p. 131
  2. Paniate A, Massaro G et al Phys. Rev. Applied 21 (2) (2024)
  3. Moodley Ch, Forbes A Laser & Photonics Reviews (2024)
  4. Cao D-Zh, Zhang X-Zh et al Phys. Rev. A 107 (2) (2023)
  5. Gili V F, Dupish D et al Appl. Opt. 62 3093 (2023)
  6. Sun Zh, Tian T et al Chin. Opt. Lett. 21 081101 (2023)
  7. Schaffer K, Lemos G B Trends and Challenges in Cognitive Modeling STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health Chapter 9 (2023) p. 113
  8. Chang Ch, Sun Sh et al Acta Phys. Sin. 72 183301 (2023)
  9. Nape I, Sephton B et al 8 (5) (2023)
  10. Fedorov A K, Kiktenko E O et al Uspekhi Fizicheskikh Nauk 193 1162 (2023)
  11. [Fedorov A K, Kiktenko E O et al Phys. Usp. 66 1095 (2023)]
  12. Moodley Ch, Forbes A J. Opt. Soc. Am. B 40 3073 (2023)
  13. Gieysztor M, Nepinak J et al Opt. Express 31 20629 (2023)
  14. Trenkwalder L M, López-Incera A et al Mach. Learn.: Sci. Technol. 4 035043 (2023)
  15. Wittkop M, Marmolejo-Tejada Ju M, Mosquera M A Organic Electronics 120 106858 (2023)
  16. Machavariani A Quantum Entanglement in High Energy Physics Chapter 13 (2023)
  17. Gili V F, Piccinini C et al 121 (10) (2022)
  18. Xiong J, Zheng P et al Phys. Rev. Applied 18 (3) (2022)
  19. Dogra Sh, McCord J J, Paraoanu G S Nat Commun 13 (1) (2022)
  20. He Yu, Zhou Yu et al J. Opt. Soc. Am. B 39 3100 (2022)
  21. Balakin D A, Belinsky A V Quantum Inf Process 21 (7) (2022)
  22. Lib O, Bromberg Ya 7 (3) (2022)
  23. Lib O, Bromberg Ya Conference on Lasers and Electro-Optics, (2021) p. JTh3A.20
  24. Friederich P, Krenn M et al Mach. Learn.: Sci. Technol. 2 025027 (2021)
  25. Liu D, Tian M et al Phys. Rev. Applied 16 (6) (2021)
  26. Belinsky A V Uspekhi Fizicheskikh Nauk 190 1335 (2020) [Belinsky A V Phys.-Usp. 63 1256 (2020)]
  27. Ribeiro P H S, Häffner T et al Phys. Rev. A 101 (5) (2020)
  28. Yu W-K, Leng J Physics Letters A 384 126778 (2020)
  29. Cerf N J, Jabbour M G Proc. Natl. Acad. Sci. U.S.A. 117 33107 (2020)
  30. Sun J, Peng M et al Complexity 2020 1 (2020)
  31. Liu Sh, Zhang Y et al Phys. Rev. A 101 (5) (2020)
  32. Valencia N H, Goel S et al Nat. Phys. 16 1112 (2020)
  33. Korotkova O, Gbur G Progress In Optics Vol. A Tribute to Emil WolfApplications of optical coherence theory65 (2020) p. 43
  34. Roux F S Phys. Rev. Research 2 (3) (2020)
  35. Otte E, Nape I et al J. Opt. Soc. Am. B 37 A309 (2020)
  36. Moreau P-A, Toninelli E et al Sci. Adv. 5 (7) (2019)
  37. Aidukas T, Konda P Ch et al Sci Rep 9 (1) (2019)
  38. Toninelli E, Ndagano B et al Adv. Opt. Photon. 11 67 (2019)
  39. Moreau P-A, Toninelli E et al Nat Rev Phys 1 367 (2019)
  40. Ibarra-Borja Z, Sevilla-Gutiérrez C et al Opt. Express 27 25228 (2019)
  41. Konrad T, Forbes A Contemporary Physics 60 1 (2019)
  42. Melnikov A A, Poulsen N H et al Proc. Natl. Acad. Sci. U.S.A. 115 1221 (2018)
  43. Moreau P-A, Toninelli E et al Opt. Express 26 7528 (2018)
  44. Li Zh, Medvedev N et al J. Phys. B: At. Mol. Opt. Phys. 51 025503 (2018)
  45. Hoenders B J Advances In Imaging And Electron Physics Vol. 208 (2018) p. 1
  46. Moreau Paul‐Antoine, Toninelli E et al Laser & Photonics Reviews 12 (1) (2018)
  47. Gantsevich S V, Gurevich V L Phys. Solid State 60 1 (2018)
  48. Arruda M F Z, Soares W C et al Phys. Rev. A 98 (2) (2018)
  49. Ryczkowski P, Barbier M et al APL Photonics 2 046102 (2017)
  50. Speirits F C, Sonnleitner M, Barnett S M J. Opt. 19 044001 (2017)
  51. Li Heng-xing, Bai Yan-feng et al Chinese Phys. B 26 104204 (2017)
  52. McLaren M, Forbes A J. Opt. 19 044006 (2017)
  53. Sych D, Averchenko V, Leuchs G Phys. Rev. A 96 (5) (2017)
  54. Zhong MaLin, Xu P et al Sci. China Phys. Mech. Astron. 59 (7) (2016)
  55. Krenn M, Malik M et al Optics in Our Time Chapter 18 (2016) p. 455
  56. Siddiqui M A, Qureshi T Quantum Stud.: Math. Found. 3 115 (2016)
  57. Ryczkowski P, Barbier M et al Nature Photon 10 167 (2016)
  58. Ghalaii M, Afsary M et al Phys. Rev. A 94 (4) (2016)
  59. Aspden R S, Morris P A et al J. Opt. 18 055204 (2016)
  60. (Quantum Information and Computation XIII) Vol. Quantum Information and Computation XIIIConsiderations on collapse of the wavefunctionEricDonkorAndrew R.PirichMichaelHaydukJ.ReintjesMarkBashkansky9500 (2015) p. 95000U
  61. Siddiqui M A Int. J. Quantum Inform. 13 1550022 (2015)
  62. Zhang Y, Mclaren M et al Opt. Express 22 17039 (2014)
  63. Aspden R S, Tasca D S et al Journal Of Modern Optics 61 547 (2014)
  64. D’Angelo M, Garuccio A et al Springer Proceedings In Physics Vol. Frontiers of Fundamental Physics and Physics Education ResearchToward “Ghost Imaging” with Cosmic Ray Muons145 Chapter 24 (2014) p. 237
  65. Barnett S M Quantum Information and Coherence Chapter 1 (2014) p. 1
  66. (Complex Light and Optical Forces VIII) Vol. Complex Light and Optical Forces VIIIEncoding mutually unbiased bases in orbital angular momentum for quantum key distributionDavid L.AndrewsEnrique J.GalvezJesperGlückstadA.DudleyM.MafuS.GoyalD.GiovanniniM.McLarenT.KonradM. J.PadgettF.PetruccioneN.LütkenhausA.Forbes8999 (2014) p. 89991I
  67. Belinsky A V, Shulman M Kh Uspekhi Fizicheskikh Nauk 184 1135 (2014) [Belinsky A V, Shulman M Kh Phys.-Usp. 57 1022 (2014)]
  68. Dongze L, Xiang L et al IEEE Trans. Geosci. Remote Sensing 52 2261 (2014)
  69. McLaren M, Mhlanga T et al Nat Commun 5 (1) (2014)
  70. Belinskii A V, Chirkin A S Uspekhi Fizicheskikh Nauk 183 1231 (2013) [Belinsky A V, Chirkin A S Phys.-Usp. 56 1126 (2013)]
  71. McLaren M, Romero Ja et al Phys. Rev. A 88 (3) (2013)
  72. Mafu M, Dudley A et al Phys. Rev. A 88 (3) (2013)
  73. Xu D-Q, Song X-B et al Optics Communications 309 298 (2013)
  74. Shih Ya Classical, Semi-classical and Quantum Noise Chapter 14 (2012) p. 169
  75. Romero J, Giovannini D et al Phys. Rev. A 86 (1) (2012)
  76. Shih Ya Quantum Inf Process 11 995 (2012)
  77. Walborn S P, Souto R P H, Monken C H Opt. Express 19 17308 (2011)
  78. Chan K W C, Simon D S et al Phys. Rev. A 84 (4) (2011)
  79. Liu Y-Ch, Kuang L-M Phys. Rev. A 83 (5) (2011)
  80. Karmakar S, Shih Ya Frontiers in Optics 2010/Laser Science XXVI, (2010) p. PDPC8
  81. Karmakar S, Shih Ya Phys. Rev. A 81 (3) (2010)
  82. Luo K-H, Chen X-H et al Phys. Rev. A 82 (3) (2010)
  83. Qian L, Kai-Hong L et al Chinese Phys. B 19 094211 (2010)
  84. Shih Ya The Western Ontario Series In Philosophy Of Science Vol. Quantum Reality, Relativistic Causality, and Closing the Epistemic CircleThe Physics of 2 ≠ 1+173 Chapter 11 (2009) p. 157
  85. Lvovsky A I, Raymer M G Rev. Mod. Phys. 81 299 (2009)
  86. Luo K-H, Wen J et al Phys. Rev. A 80 (4) (2009)
  87. Meyers R, Deacon K S, Shih Ya Phys. Rev. A 77 (4) (2008)
  88. Shih Ya International Conference on Quantum Information, (2007) p. IFH1
  89. Shih Ya 2007 Conference on Lasers and Electro-Optics - Pacific Rim, (2007) p. 1
  90. Shih Ya Frontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion, (2007) p. FTuI3
  91. Wen J, Du Sh, Rubin M H Phys. Rev. A 76 (1) (2007)
  92. Basano L, Ottonello P 75 343 (2007)
  93. Shih Ya Front. Phys. China 2 125 (2007)
  94. Shih Ya IEEE J. Select. Topics Quantum Electron. 13 1016 (2007)
  95. Kolchin P Phys. Rev. A 75 (3) (2007)
  96. Wen J, Xu P et al Phys. Rev. A 76 (2) (2007)
  97. Meyers R, Deacon K, Shih Ya Journal Of Modern Optics 54 2381 (2007)
  98. Wen J, Rubin M H, Shih Ya Phys. Rev. A 76 (4) (2007)
  99. Erkmen B I, Shapiro Je H Phys. Rev. A 74 (4) (2006)
  100. Basano L, Ottonello P 89 (9) (2006)
  101. Belinskii A V, Isaeva A V et al Uspekhi Fizicheskikh Nauk 176 543 (2006)
  102. D’Angelo M, Shih Y H Laser Phys. Lett. 2 567 (2005)
  103. Abouraddy A F, Stone P R et al Phys. Rev. Lett. 93 (21) (2004)
  104. Abouraddy A F, Toussaint, Jr Kimani C et al J. Opt. Soc. Am. B 19 656 (2002)
  105. Abouraddy A F, Nasr M B et al Phys. Rev. A 65 (5) (2002)
  106. Crispino M, Di Giuseppe G et al Fortschr. Phys. 48 589 (2000)
  107. Burlakov A V, Kulik S P et al J. Exp. Theor. Phys. 86 1090 (1998)
  108. Strekalov D V, Shih Y H Phys. Rev. A 56 3129 (1997)
  109. Burlakov A V, Chekhova M V et al Phys. Rev. A 56 3214 (1997)
  110. Rubin M H Phys. Rev. A 54 5349 (1996)
  111. SHIH Y H, SERGIENKO A V et al Annals Of The New York Academy Of Sciences 755 121 (1995)
  112. KLYSHKO D N Annals Of The New York Academy Of Sciences 755 13 (1995)
  113. Pittman T B, Shih Y H et al Phys. Rev. A 52 R3429 (1995)
  114. Delone N B, Krainov V P Multiphoton Processes in Atoms Chapter 11 (1994) p. 291
  115. Demutskii V P, Polovin R V Uspekhi Fizicheskikh Nauk 162 93 (1992)
  116. Klyshko D N Physics Letters A 163 349 (1992)
  117. Karasev V P J Russ Laser Res 12 147 (1991)
  118. Klyshko D N Physics Letters A 154 433 (1991)
  119. Karasev V P J Russ Laser Res 12 431 (1991)
  120. Klyshko D N Physics Letters A 146 93 (1990)
  121. Klyshko D N Physics Letters A 137 334 (1989)
  122. Klyshko D N Physics Letters A 128 133 (1988)
  123. Klyshko D N Physics Letters A 132 299 (1988)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions