УСПЕХИ ФИЗИЧЕСКИХ НАУК

537.312.62

ВЛИЯНИЕ ВЫСОКОГО ДАВЛЕНИЯ НА СВЕРХПРОВОДЯЩИЕ СВОЙСТВА МЕТАЛЛОВ

Н. Б. Брандт, Н. И. Гинзбург

I. ВВЕДЕНИЕ

Исследование влияния всестороннего сжатия на целый ряд физических явлений в металлах при низких температурах, например, на квантовые осцилляционные эффекты, гальваномагнитные явления, резонансные эффекты, полиморфные превращения и сверхпроводимость, представляет большой интерес. Эти исследования позволяют определить характер изменения энергетического спектра металлов при изменении параметров его кристаллической решетки. Поскольку энергетический спектр является одной из основных характеристик, определяющих электрические и магнитные свойства металлов, а перечисленные выше методы исследования энергетического спектра в качестве обязательного условия требуют применения низких температур, проблема получения высоких и однородных давлений при низких температурах уже давно привлекает внимание.

Основная трудность получения высоких и однородных давлений при низких температурах заключается в том, что пластичность всех веществ, используемых обычно в качестве среды, передающей давление, резко уменьшается при понижении температуры. Применение же для этой цели ожиженных газов ограничивается областью весьма малых давлений (для гелия до 140 *атм* при $T = 4,2^{\circ}$ K), выше которых газы затвердевают. Однако в последнее время удалось получить достаточно однородные давления, достигающие 30 000 *атм* в области гелиевых и сверхнизких температур.

В связи с развитием экспериментальных методов получения высоких давлений при низких температурах еще больше возрос интерес к исследованию влияния высокого давления на различные физические свойства элементов и в первую очередь на сверхпроводящие свойства металлов. Последнему обстоятельству в значительной степени способствовало появление микротеории сверхпроводимости.

В настоящем обзоре обсуждаются в основном работы по исследованию сверхпроводящих свойств элементов при высоких давлениях, опубликованные в течение последних 3—4 лет, а также некоторые более ранние работы, получившие развитие в последние годы и не вошедшие в обзор Свенсона, появившийся в 1960 г. *).

^{*)} Перевод обзора К Свенсона¹ под редакцией Л Ф. Верещагина с некоторыми дополнениями опубликован в 1963 г.

II. МЕТОДЫ ПОЛУЧЕНИЯ ВЫСОКИХ ДАВЛЕНИЙ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

Все предложенные до настоящего времени методы получения высоких давлений при низких температурах можно разделить на две основные группы:

1. Методы «консервирования» или «замораживания» давления, при которых давление создается в области высоких температур, после чего установка охлаждается до температуры жидкого гелия.

Преимуществом этой группы методов является, в частности, возможность изучения при низких температурах новых кристаллических модификаций в переохлажденном состоянии в тех случаях, когда величина давления фазового перехода сильно возрастает при понижении температуры, а также когда скорость полиморфных превращений при низких температурах очень мала.

Очевидно, что пластичность передающей сжатие среды в области низких температур в этом случае не играет существенной роли, так как давление создается в той области температур, где пластичность среды велика. Если исходное давление достаточно однородно, то при условии изотропности среды и образца «замороженное» давление также остается однородным, хотя его величина может измениться за счет термического сокращения камеры высокого давления и образца. Необходимо, однако, иметь в виду, что в процессе охлаждения анизотропного образца, сжатого малопластичной изотропной средой, в нем могут возникнуть односторонние деформации, величина которых определяется в основном степенью анизотропии образца.

2. Методы, в которых давление создается непосредственно при низких температурах.

Основным преимуществом этой группы методов является возможность изменения давления непосредственно при температуре опыта. Неоднородность давления в этом случае определяется условиями, в которых осуществляется сжатие, или пластичностью среды, передающей давление.

В обеих группах методов используются приборы, в которых давление передается непосредственно к образцу, а также приборы, в которых для передачи давления используется промежуточная среда, окружающая образец.

Остановимся коротко на основных особенностях и параметрах приборов различных типов.

1. Получение «замороженных» давлений с использованием промежуточной среды

К числу таких методов прежде всего следует отнести ледовую бомбу Лазарева и Кан² (см. также¹), в которой давление создается за счет аномального изменения объема воды при ее замерзании в бомбе постоянного объема.

При исследовании образцов малых размеров по сравнению с внутренним объемом бомбы и при соответствующем выборе формы образцов этот метод позволяет получать достаточно однородные давления. Однако необходимо иметь в виду, что при охлаждении анизотропного образца, окруженного изотропным льдом, в образце могут возникать неоднородные напряжения. Кроме того, в процессе замерзания воды и при отогреве бомбы могут возникать пластические деформации в результате возможных смещений образующегося льда, обладающего очень малой плас-

тичностью. Это связано с тем, что замерзание воды происходит неравновесным образом и степень сжатия в замерзающих ранее областях не соответствует давлению, которое возникает после полного замерзания воды. Так получают фиксированное давление, величина которого при температуре жидкого гелия обычно составляет 1800—2000 атм. Использование вместо воды водных растворов спирта-сырца ³ увеличивает однородность давления вследствие резкого увеличения пластичности среды,

а также позволяет получать промежуточные давления между 0 и 2000 *атм* (рис. 1).

Следует отметить, что резкое увеличение пластичности среды может приводить при длительной консервации давления к спонтанному уменьшению давления в бомбе даже при температурах, близких к 100°К, в результате фазового перехода «льда II» в «лед І» в замерзшем растворе спирта в воде. Отметим, что этот эффект, который отсутствует у чистого льда, стимулируется небольшим повышением температуры после охлаждения. Следует учитывать влияние скорости и режима охлажления на величину давле-

Рис. 1. Зависимость давления в бомбе постоянного объема при температуре жидкого гелия от концентрации спирта-сырца в водно-спиртовом растворе. По оси ординат отложено изменение температуры сверхпроводящего перехода олова $\Delta T_k = (T_k)p=0 - T_k(p);$ $\Delta T_k = -4.5 \cdot 10^{-5} p (p-e am.m), так что <math>\Delta T_k = 0.1^\circ$ K соответствует $p \approx 2000$ ат.

ния, сохраняющуюся при низких температурах. Воспроизводимые результаты, по-видимому, можно получить лишь при работе с одним и тем же прибором при одинаковом режиме охлаждения.

При помощи ледовой бомбы в работе ⁴ было впервые исследовано влияние давления около 1600 *атм* на сверхпроводящие свойства кадмия в области сверхнизких температур.

Очень однородные, близкие к гидростатическим, давления были получены в работе ⁵. В качестве среды, передающей давление при «высокой» температуре, автор использовал газообразный гелий. Сжатие осуществлялось при температуре, близкой к температуре кипения жидкого водорода (20,4° K), после чего прибор охлаждался до гелиевых температур. Первоначальное давление (около 3000 атм) выбиралось таким образом, чтобы падением давления в бомбе при замерзании гелия можно было пренебречь. Вследствие малости термического сокращения в этой области температур, а также вследствие большой пластичности твердого гелия, при охлаждении прибора однородность давления практически не изменялась.

Получение этим методом более высоких давлений должно приводить, по-видимому, к увеличению неоднородности давления в результате изменения плотности при затвердевании гелия.

Значительно большие давления могут быть получены, если использовать в качестве среды хлористое серебро. Для получения высоких давлений при низких температурах хлористое серебро впервые было исполь зовано в работе ⁶ при исследовании зависимости критической температуры от давления у тантала при давлениях до 22 000 *атм*. Образец цилиндрической формы диаметром около 5 мм, занрессованный в пилюлю хлористого серебра, сжимался между двумя поршнями, изготовленными из карбида вольфрама в матрице из бериллиевой бронзы. Давление создавалось при комнатной температуре при помощи гидравлического пресса, после чего прибор охлаждался в криостате. Поправка

Рис. 2. Бомба высокого давления. 1 — Гайка, 2 — шток, передаю-

1 — Гайка, 2 — шток, передающий усилие от пресса; 3 — корпус бомбы; 4 — рабочий поршень с грибковым уплотнением; 5 — исследуемый образец; 6 — держатель образца; 7 — опорная гайка обтюратора; 8 — обтюратор, 9 — среда, передающая давление. на изменение давления при охлаждении определялась тензометром. Общая ошибка в определении величины давления не превышала 10%.

Хлористое серебро в качестве среды, передающей давление, было использовано также при исследовании влияния давления на электропроводимость висмута^{7,8}. Эта методика с успехом может быть использована для исследования влияния давления на

Рис. 3. Зависимость давления в бомбе при температуре ниже 77° К от давления при комнатной температуре.

× — 20,4° К; Δ — 77° К (бомба из бериллиевой бронзы), ○ — 77° К (стальнан бомба)

критические токи сверхпроводников. Применение хлористого серебра неизбежно приводит к небольшой пластической деформации образцов и поэтому удобно лишь при исследовании сверхпроводящих свойств поликристаллических образцов, когда такая деформация несущественна.

Весьма однородные давления при низких температурах были получены при использовании смеси из приблизительно равных по объему частей масла и обезвоженного керосина⁹. Бомба высокого давления с использованием керосино-масляной смеси изображена на рис. 2. Давление создается в канале 9 при комнатной температуре гидравлическим прессом и фиксируется гайкой 1. Диаметр рабочей камеры — 8 мм, высота при максимальном давлении около 20 мм, внешний диаметр корпуса — 32 мм. В обтюраторе 8 расположены четыре конусных электроввода с изоляцией из органического стекла ¹⁰. Образец 5 монтируется в держателе 6 на обтюраторе 8. Все части бомбы изготавливались из термообработанной бериллиевой бронзы. Бомба выдерживала при комнатной температуре без пластической деформации давление до 12 клтм. При охлаждении бомбы давление падало. Зависимость «замороженного» давления в бомбе от первоначального давления изображена на рис. 3. Видно, что уменьшение давления при охлаждении происходит лишь выше 77° К; ниже этой температуры давление практически не изменяется. Уменьшение давления за счет охлаждения составляет примерно 4 катм.

Градуировка, приведенная на рис. 3, справедлива при условии малости объема образца по сравнению с объемом камеры высокого давления.

В последнее время с использованием маслянокеросиновых растворов при температуре жидкого гелия были получены давления до 20 000 *атм* при достаточно высокой степени однородности ⁸.

2. Получение «замороженных» давлений без использования передающей среды

Первые исследования, проведенные этим методом, были выполнены в работе ¹¹, где давление создавалось путем сжатия при комнатной температуре тонких (толщиной около 50 мк) дисков между двумя агатовыми пуансонами с последующим охлаждением устройства до температуры жидкого гелия. Этим методом было исследовано влияние давления на температуру сверхпроводящего перехода олова, свинца, таллия и открыта сверхпроводимость кристаллической модификации висмута Ві III. Несмотря на то, что максимальное давление, полученное при помощи этого метода, составляет около 45 000 атм, само давление оказывается весьма неоднородным, изменяясь практически от нуля на периферии образца до максимального значения в центре. Большая неоднородность давления сильно ограничивает возможности применения этого метода и является, по-видимому, основной причиной того, что он не получил распространения.

Позднее этот метод был усовершенствован ¹². Сохранив основную идею метода, авторы перешли к исследованию массивных цилиндрических образцов диаметром около 5 и длиной 4 *мм*, сжимаемых в ци-

Рис. 4. Мультипликатор.

1,2 — Корпус; 3 — верхняя пробка; 4 — грибок; 5 — уплотняющие прокладки; 6 — держатели; 7 — нижняя пробка; 8 — поршень; 9 грибок поршяя; 10, 11 свинцовая и медная прокладки.

линдрическом канале матрицы двумя поршнями. Для уплотнения использовались прокладки из неопроновой резины, помещенные между поршнями и образцом. Переход образца в сверхпроводящее состояние регистрировался по изменению взаимоиндукции двух катушек радиотехническим методом. Давление определялось при комнатной температуре по величине нагрузки на поршни. Изменение давления при охлаждении прибора корректировалось с помощью градуированного тензометра. Степень однородности давления была достаточно высока, однако максимальная величина достигнутого давления не превышала 10 000 *атм*.

Более высокие давления при высокой степени однородности были достигнуты в работах ¹³⁻¹⁵. Давление создавалось при помощи мультипликатора, изображенного на рис. 4. Цилиндрический образец диаметром около 2,5—3 мм, длиной 3—4 мм, окруженный тонким (около 50 мк) слоем графитовой смазки, сдавливается поршнем 8 в нижнем канале обоймы 2. В качестве графитовой смазки использовалась прослойка из тонкой папиросной бумаги, пропитанной порошком чистого графита. Все детали мультипликатора изготавливаются из термообработанной бериллиевой бронзы с 3%-ным содержанием бериллия. Внутренние стенки канала обоймы 2 уплотняются предварительным обжатием при давлениях порядка 35 000—40 000 *атм.* Давление в верхнем канале мультипликатора создается путем замораживания воды ² или водных растворов спирта-

Рис. 5. Кривые сверхпроводящего перехода оловянного манометра при различных давлениях, *p* (*am.m*): 1 — 0; 2 — 19 750; 3 — 22 000; 4 — 25 000, 5 — 28 400; 6 — давление сиято. По оси ординат отложено относительное изменение сигнала на выходе радиотехнической установки.

сырца³, обладающих аномальным коэффициентом изменения объема при замерзании. Использование растворов спирт — вода позволяет получить в верхнем канале наперед заданные давления (в пределах от 1 до 2000 атм) и обеспечивает перелачу компрессии через поршни 8 и 9 к образцу вследствие достаточно высокой пластичности, сохраняющейся у твердой фазы спиртовых растворов примерно до —÷80—100° С.

При коэффициенте мультипликации около 17 в нижнем канале удается получать с хорошей воспроизводимостью давление до 30 000 *атм*.

ł

Давление определялось при помощи оловянного манометра, помещенного рядом с образцом. Регистрация сверхпроводящих переходов образцов и манометра проводилась индукционным методом. Максимальная величина неоднородности давления, оцененная по ширине сверхпроводящего перехода олова, не превышала 2—3% (рис. 5). При помощи этой методики была обнаружена сверхпроводимость модификации Bi II, исследованы сверхпроводящие свойства модификаций Bi II и Bi III ¹⁴⁻¹⁶.

Использование мультипликатора позволило разработать методику для исследования влияния высокого давления на сверхпроводящие свойства металлов в области сверхнизких температур ¹⁷⁻¹⁹. Схема прибора изображена на рис. 6. Мультипликатор 1 при помощи медного хладопровода 2 диаметром 3 мм и длиной около 200 мм соединялся с пилюлей из железо-аммониевых квасцов 4. Мультипликатор подвешивался на стейбритовой проволочке 5 диаметром 0,2 мм внутри стеклянной ампулы 6, соединенной при помощи крана 13 с угольным насосом 14. Ампула изолировалась от излучения съемным медным экраном 16, на котором жестко крепились измерительные катушки 17-18 для регистрации сверхпроводящего перехода и катушки 19-20 для определения температуры соли. Отогрев соли от температуры 0,08 до 0,6° К длился 8-10 часов, что позволяло производить измерения практически при постоянной температуре. Температура определялась по величине магнитной воспринмчивости соли баллистическим методом. Поскольку поршни изготовлялись из цементированного карбида вольфрама ВК-З и после аднабатического

размагничивания приобретали слабый постоянный ферромагнитный момент, для уменьшения его влияния на образец между поршнем и образ-

цом в канале мультипликатора помещался в графитовой смазке вкладыш из латуни или меди, длиной 8—10 мм. Таким методом было исследовано влияние давления до 27 000 атм на сверхпроводящие свойства кадмия, циркония и титана.

3. Получение давлений непосредственно принизких температурах с использованием промежуточной среды

Установки, работающие на этом принципе, состоят обычно из цилиндрической камеры высокого давления, расположенной в криостате, и механической системы, передающей к ней усилие от гидравлического пресса, вынесенного наружу. Заполнение камеры ожиженным газом осуществляется через капилляр, впаянный в верхнюю ее часть. При создании давления поршень, перемещаясь вниз, перекрывает отверстие и, сдавливая жидкость, переводит ее в твердое состояние. Как было показано в работах 20-23, в качестве сред, передающих давление, могут быть использованы твердый водород и твердый гелий. Первые эксперименты по исследованию влияния давления на сверхпроводимость с применением твердого водорода в области давлений до 5000 атм были осуществлены в работах ^{24, 25}. Аналогичная методика была использована в ²⁶ для исследования влияния давления до 10 000 атм на сверхпроводящие свойства таллия, олова, индия, тантала и ртути. Данные об использовании твердого гелия в качестве среды, передающей давление, содержатся в работе ²⁷, где было достигнуто давление 20 000 атм. Однако все исследования в этих экспериментах ограничились измерением сжимаемости твердых газов.

В опытах с использованием твердого водорода и гелия давление вычисляется обычно по величине приложенной силы и площади сечения цилиндра высокого давления. Степень однородности возникающего давления в значительной степени зависит от скорости сжатия и величины давления. К сожалению, в настоящее время нет данных о возможности использования этих методов для исследования физических явлений в области давлений свыше 10 000 атм.

Рис. 6. Схема прибора для ис следования сверхпроводящих свойств металлов при высоких давлениях в области сверхнизких температур.

10

1.9

12

1 — Мультипликатор; 2 — хладопровод; 3 — соединительная муфта; 4 — пилюля изсоли; 5 — стейбритовый подвес; 6—9— ампула с крышкой; 10, 11 — плексигласовый колпачок с трубкой; 12 — диафрагма; 13 — крак угольного насоса; 14 — угольный иасос; 15 трубка; 16 — медный экран; 17— 20 — измерительные катушки; 21 — 23 — катушки Гельмгольда,

Технические подробности использования твердого водорода и гелия в качестве передающей среды описаны в обзорах ^{1, 28}.

4. Получение давлений непосредственно при низких температурах без промежуточной среды

Первая конструкция прибора, предназначенного для исследования влияния пластической деформации на сверхпроводимость и позволяю-

Рис. 7. Схема низкотемпературного пресса.

 Поршень; 2 — рама; 3 — ручка; 4 — стейбритован трубка с передающим вращение штоком;
 редукторный механиам;
 в — крышка дьюара; 7, 8 — азотный и гелиевый дьюары; 9 — обойма с образцом. щего создавать давление непосредственно при температуре жидкого гелия, была описана в работе ²⁹ (см. также ³⁰). Прибор прелставлял собой низкотемпературный пресс, в котором при помощи редукторного механизма давление создавалось между двумя слвигающимися вертикальными стальными плоскостями. Максимальное усилие в прессе составляло около 4 т. Позже пресс несколько видоизмененной конструкции был использован для получения высоких квазигидростатических давлений при низких температурах 14, 15. Схема пресса изображена на рис. 7. Давление в прессе создается путем перемещения поршня 1 в раме 2 при помощи редукторного механизма 5, управляемого ручкой 3, расположенной на крышке 6 льюара 7. Детали пресса изготавливались из алюминиевой, фосфористой бронзы и термообработанной бериллиевой бронзы. Максимальное усилие, развиваемое прессом, составляло 2,5-3 тонны. В качестве смазки для пресса использовался порошкообразный графит. Давление создавалось во внутреннем канале матрицы 9 при помощи двух поршней из цементированного карбида вольфрама с 3%-ным содержанием кобальта. Матрица 9 изготавливалась из термообработанной бериллиевой бронзы. Внутренний канал матрицы автофретировался при давлении около атя и затем расшлифовывался. $3\bar{5}$ 000 Исследуемый образец цилиндрической формы, диаметром 2,5—3 и длиной 3—4 мм, окруженный тонким слоем графитовой смазки, помещался в центре внутреннего канала матрицы. Неоднородность давления, возникающая при таком способе сжатия, определяется степенью отклонения смазки от идеальной, что приводит к появлению тангенциальных составляющих давления между образцами и стенками канала матрицы. Для определения величины давления в канал

матрицы вкладывается образец олова, по величине смещения температуры сверхпроводящего перехода которого и определялась величина давления.

Во всех опытах с использованием оловянного манометра давление определяется по условной «оловянной» шкале давлений. Принимается, что формула для олова

$$T_{\rm F}(p) = 3,733 - 4,95 \cdot 10^{-5}p + 3,9 \cdot 10^{-10}p^2, \tag{1}$$

полученная в работе ²⁶ до давлений 10 000 *атм*, является справедливой при давлениях до 30 000 *атм*. Некоторым доводом в пользу возможности такой экстраполяции является хорошее согласие величины смещения $T_{\rm K}$, определенного по формуле (1), с экспериментальными данными ¹³,

которые, к сожалению, пе являются достаточно точными.

Другой способ определения давления заключался в измерении величины деформации рамы пресса 2 или матрицы 9 (см. рис. 7) при помощи тензодатчиков, проградуированных при низких температурах по величине смещения $T_{\rm R}$ для олова, а при высоких температурах — по реперным точкам фазовых переходов церия и висмута.

Переход образца в сверхпроводящее состояние ^{14, 15} регистрировался радиотехническим методом ³¹ по изменению взаимоиндукции двух катушек на частоте 20 гц.

Другая конструкция низкотемпературного пресса описана в работе ³². Прибор предназначен для измерения электросопротивления металлов при давлениях до 35 катм в области низких температур. Общий вид прибора изображен на рис. 8. Образцы толщиной 0,03, шири-

Рис. 8. а) Регулируемый низкотемпературный зажим: 1 — корпус; 2 — подвижный рычаг; 3 — клин; б) камера высокого давления: 4 — поршень; 5 — бронзовая прокладка; 6 — держатель образца; 7 — образец; 8 — верхняя и нижняя стеатитовые шайбы; 9 — слюдяные прокладки; 10, 11 — опорные подложки; 12 — угольный термомстр.

ной 0,2 и длиной 2 мм сжимаются между двумя стеатитовыми шайбами при помощи специального устройства, действие которого ясно из рисунка. Перемещение клина позволяет изменять величину усилия в пределах до 2000 кГ непосредственно при температуре опыта. Подробности монтажа образца изображены на рис. 8, б. Электроды из платиновой полоски сечением 0,03-0,05 мм² вводились через отверстия диаметром 0,15 мм в нижней стеатитовой шайбе и изолировались при помощи прокладок из слюды. Детали зажима изготавливались из аустенитовой слабомагнитной стали. а детали камеры высокого давления — из термообработанной бериллие-вой бронзы с содержанием бериллия 2—4%. Бериллиевая бронза выдерживала без заметной пластической деформации давление до 24 000 атм при комнатной температуре и до 35 000 атм при температуре жидкого гелия. Поршень 4 изготавливался из твердого сплава. Давление измерялось при помощи тензодатчиков, наклеенных на рычаг 2. Тензодатчики градуировались при низких температурах по известной зависимости температуры сверхпроводящего перехода индия от давления. Точность определения давления, по мнению авторов, в области давлений до 10 000 атм составляла около 10%, при более высоких давлениях — около 20%, хотя исследования зависимости критической температуры индия от давления указывает на более высокую точность.

Таблица 1 49

Сверхпро- водник	Т _к , °К	H ₀ , ə	θ, °K	$\frac{\partial T_{\mathbf{K}}}{\partial p} \cdot 105,$ °K/amm	$ \begin{pmatrix} \frac{\partial H_{\mathbf{K}}}{\partial p} \end{pmatrix}_{\substack{T=T_{\mathbf{K}} \\ \frac{\partial}{\partial m}M}} \cdot 103, $	$ \begin{pmatrix} \frac{\partial H_{\rm H}}{\partial p} \\ \frac{\partial P}{T=0} & 103, \\ \frac{9}{amm} \end{pmatrix} $	$\frac{\partial \ln (T_{\rm K}/\theta)}{\partial \ln v}$	$\frac{\frac{1}{\Theta} \left(\frac{\partial \Theta}{\partial p} \right) \cdot 106,}{am_{\mathcal{M}} 1}$	$\frac{1}{v}\frac{\partial v}{\partial p}\cdot 106,$ amm-1	ү·104, ка 1. град-2× ×мо 16-1	
Непереходяме металлы											
Al Bi II Bi III Ga Ga II In	1,19 3,916 7 1,09 6,38 3,407	99 ~320 51 283	418 240 200 109	$\begin{array}{c} -3,2^{16} \\ \sim 0^{16} \\ -1,8\pm 0,3 \\ -3,0^{32} \\ -4,36\pm 0,1 \\ -5,05\pm 0,1 \\ -4,36\pm 0,1 \\ -5,05\pm 0,1 \\ -5,$	$-4,8\pm0,4 \\ -4,516 \\ 016 \\ -6,8\pm0,3 \\ -6,8\pm0,45 \\ -6,8\pm0,45 \\ -6,8\pm0,3 \\ -6,8\pm0,45 \\ -6,8\pm0,3 \\ -6,8\pm0,45 \\ -6,8\pm0,15 \\ -6,8\pm$	$-3,0\pm0,4$ $-3,6\pm0,2$	20 10,3 8,0	3,55 6,0	1,34 2,55	2,59 0,8-1,5 3,5-3,6	
PD Hgα Hgβ Tl Sn Zn Cd	7,19 4,153 3,95 3,39 3,733 0,91 0,54	$ \begin{array}{r} 803 \\ 411 \\ 340 \\ 162 \\ 306 \\ 53 \\ 28 \\ \end{array} $	103 69 93 100 195 235 ≍ 188 €	$\begin{array}{c} -4.3\pm0.5 \\ -3.6^{26} \\ -4.4^{26} \\ 1.5\pm0.4 \\ -4.4\pm0.3 \\ \end{array}$	$\begin{array}{c} -9,33\pm0,13\\ -5,7\pm0,5\\ -8,7\pm0,3\\ 3,1\pm0,15\\ -6,48\pm0,14\\ -1,8\pm0,5\\ -2,34\pm0,4^{78}\end{array}$	$\begin{array}{c} -7.9 \pm 0.2133 \\ -7.2 \pm 0.337 \\ -7.0 \pm 0.337 \\ 2.7 \pm 0.5 \\ -5.0 \pm 1.0 \\ -1.4 \pm 0.2 \\ -1.0 \pm 0.1117 \end{array}$	5,3 5 7,5 0 9,1 12 19	$ \begin{array}{r} 6,15\\ 8,8\\ 7,56\\ 4,0\\ 3,4\\ 4,82 \end{array} $	2,37 4,0 2,77 1,87 1,7 2,2	$\begin{array}{c} 7,1\\ 3,75-4,5\\ 2,8-3,4\\ 3,45-3,95\\ 1,36\\ 1,7\end{array}$	
Переходные металлы											
Laβ Nb R b Bu	5,95 9,22 1,70 0,49	1600 1944 201 66	142 252 417 400	-0,17±0,09	$\begin{array}{c} -1,8\pm2,5\\ -1,2\pm0,3\\ 0,4\pm0,2\\ 0,8\pm0,4 \end{array}$	$-5,5\pm0,5$ $-1,2\pm0,167$	6,7 1,5 5,8 	2,81	3,51	$\begin{array}{c} 15,2^{82} \\ 19,6^{79} \\ 6,0^{79} \\ 7,6^{79} \end{array}$	
Ta Th Ti V Zr Mo	4,46 1,33 0,40 5,30 0,56 0,95	830 <u>100</u> 1310 47	255 142 429 400 270 425	$\begin{array}{c} -0,26 \\ -1,7\pm0,2 \\ 0,55^{*})^{19} \\ 0,9;1,4^{**})^{18} \\ 0,1\pm0,1 \end{array}$	$0,9\pm0,3361,4*)192,0\pm0,22,6;2,9**)18$	1,05±0,3 ³⁶ 1,3±0,1 ⁶⁷	$3 \\ 8,3 \\ -0,6 \\ 4$	0,865 1,82 0,79 1,09 0,36	$0,48 \\ 1,82 \\ 1,08 \\ 0,88 \\ 1,04 \\ 0,36$	12,279 7,181 880 22,380 6,979 5,079	
*) Значения определены в области больших давлений (см рис. 28). **) Даны значения для неотожженного и отожженного образца, определенные в области больших давлений (см. рис. 27).											

н. б. брандт, н. и. гинзбург

Поскольку сверхпроводящий переход регистрировался по изменению электрического сопротивления, ширина кривых сверхпроводящего перехода не может быть использована для оценки величины неоднородности давления.

Для создания давления при низких температурах использовались также установки, в которых давление от гидравлического компрессора, вынесенного за пределы криостата, передавалось в низкотемпературную часть прибора при помощи тяг, поддерживающих опорную плиту, и широкого полого цилиндра ³³ (см. также ^{1, 28}). Конструкция пресса позволяла передавать в криостат усилие до 10 *m*.

При сравнении методов создания давления непосредственно при низких температурах с методами «консервирования» давления необходимо отметить следующее. Состояние образца, сжатого непосредственно при низкой температуре, отличается от состояния образца, находящегося при таком же давлении, созданном методами консервирования. Это различие связано, с одной стороны, с уменьшением пластичности образца при охлаждении и, с другой стороны, с изменением условий на границе образца и камеры высокого давления. Практически это приводит к тому, что при давлениях выше ~ 15 000 *атм* однородность давления в методах «консервирования» существенно выше однородности давления, полученного в области низких температур.

III. ВЛИЯНИЕ ДАВЛЕНИЯ НА СВОЙСТВА СВЕРХПРОВОДНИКОВ

В большинстве опубликованных до настоящего времени работ по исследованию влияния давления на сверхпроводимость не удавалось достичь больших относительных изменений температуры сверхпроводящего перехода под действием давления. Целью большей части работ являлось главным образом определение знака п величины производных $\partial T_{\rm K}/\partial p$ и $\partial H_{\rm L}/\partial p$ ($T_{\rm K}$ — критическая температура, $H_{\rm K}$ — критическое поле) в области малых давлений. Полученные при этих исследованиях параметры для чистых металлов приведены в табл. I, а аналогичные данные для сплавов в табл. II *).

Характерной особенностью приведенных данных является то, что температура сверхпроводящего перехода у большинства элементов понижается при сжатии. Повышение критической температуры наблюдается у циркония, титана и у небольшого числа бинарных сплавов: ${\rm Bi}_2{
m K}$, ${
m Bi}_4{
m Rb}$, ${
m Bi}_3{
m Ni}$ и ${
m Nb}_{75}{
m Zr}_{25}$, а также у таллия на начальном участке зависимости T_κ (p).

Особый интерес в настоящее время представляют работы по исследованию функциональной зависимости критической температуры от давления, которым в настоящем обзоре уделяется основное внимание.

Такие данные получены для олова, индия, таллия, кадмия, тантала, алюминия, циркония, титана, α- и β-ртути и для некоторых сплавов.

*) Значения $T_{\rm K}$ и H_0 взяты из работы ⁷⁷. Значения θ , $\left(\frac{\partial T_{\rm K}}{\partial p}\right)_{T_{\rm K}}$, $\frac{\partial H_{\rm K}}{\partial p}$, $\frac{\partial \ln (T_{\rm K}/\theta)}{\partial \ln v}$ в случае, когда нет ссылки, заимствованы из обзоров ⁴², ⁵⁸, ⁷¹. Производные $\frac{\partial \theta}{\partial \rho}$ рассчитаны по формуле Грюнайзена (3) Значения γ для непереходных металлов заимствованы из работы ⁸⁰, а значения сжимаемостей $\frac{1}{v}\left(\frac{dv}{dp}\right)$ из ⁶⁶.

Таблица II

I

Сплав	Т _к , °К	$\frac{\partial T_{\mathbf{K}}}{\partial p} \cdot 105, \ ^{\circ}\mathbf{K}/am_{\mathbf{M}}$	ү•104, кал× ×град-2 моль-1
Bi ₂ K Au ₂ Bi BiLi Bi ₃ Ni Bi ₄ Rh Nb ₃ Sn Nb ₇₅ Zr ₂₅ V ₃ Ga V ₃ Si InSb II α -Bi ₂ Pd β -Bi ₂ Pd	$\begin{array}{r} 3,58\\ 1,75\\ 2,47\\ 4,06\\ 2,9;3,4\\ 18,3\\ 11,1\\ 14,6\\ 14,6\\ 1,88\\ 1,70\\ 4,25\\ \end{array}$	$5,1^{31}$ $-3,5^{31}$ $5,4^{31}$ $2,7^{31}$ -14^{44} $2,2^{43}$ $-2,4^{44}$ $-2,4^{44}$ $-2,1^{44}$ $-0,01^{53}$ $-2,5^{76}$ $-5,6^{76}$	15073 ~3073 24473 18673

Олово и индий

Впервые нелинейный характер зависимости критической температуры олова от давления был обнаружен в работе ¹¹. Однако вследствие большой неоднородности возникающего давления и неточности в определении величины давления эти результаты носят качественный характер.

Рис. 9. Изменение температуры сверхпроводящего перехода олова при сжатии. Сплошная кривая построена по формуле (1), пунктирная — только по первому линейному ее члену.

Наиболее точные данные для олова в области давлений до 10 000 *атм*, полученные в работе ²⁶, приведены на рис. 9. Как указывалось, экстраполяция кривой *1* по формуле (1) в область больших давлений удовлетворительно согласуется с результатами работы ¹¹. Аналогичные данные

Сплошная кривая построена по приведенной на рисунке формуле, пунктирная — только по первому линейному ее члену.

для индия приведены на рис. 10. Измерения критических полей у сжатых образцов олова в ¹² ограничиваются небольшим температурным

 $\begin{array}{l} 1-1,5^{\circ} \mathrm{K};\ 2-1,7^{\circ} \mathrm{K};\ 3-1,9^{\circ} \mathrm{K};\ 4-2,1^{\circ} \mathrm{K};\ 5-2,3^{\circ} \mathrm{K};\\ 6-2,5^{\circ} \mathrm{K};\ 7-2,74^{\circ} \mathrm{K};\ 8-2,79^{\circ} \mathrm{K};\ 9-2,9^{\circ} \mathrm{K};\ 10-2,96^{\circ} \mathrm{K};\\ 11-3,1^{\circ} \mathrm{K}.\end{array}$

интервалом (3,73—2,6° K), в результате чего эти данные нельзя использовать для определения значения H_0 (критического поля $H_{\rm R}$ при T=0) с достаточной степенью точно-

сти. Исследования кривых критических полей у олова и индия в более широком интервале температур и давлений было проведено в ³⁴. На рис. 11 и 12 изображены кривые критических полей для различных образцов олова и индия при различных давлениях в координатах $H_{\rm K}$, T^2 . Близкий к линейному характер этой зависимости позволяет в первом приближении определить зависимость критических полей H_0 от давления.

Зависимости критического иоля от давления для олова и индия изображены на рис. 13 и 14. Следует отметить, что в области малых давлений у олова наблюдается ³⁵ нерегулярный характер зависимости $T_{\kappa}(p)$ (рис. 15), который может объяс-

Рис. 15. Зависимость ΔT_{R} от p для индия (сплошная кривая) и для олова (пунктирные кривые).

∆ и ○ — разные образцы олова.

нить расхождение данных для величины $\partial T_{\rm H}/\partial p$, полученных различными авторами для разных давлений. Поскольку аномалия в зависимости

Т_к (р) у олова не является следствием полиморфного превращения, возможно, она отражает изменения, происходящие в энергетическом спектре олова при сжатии.

Тантал

Зависимость критической температуры тантала от давления исследовалась в области давлений до 22 000 атм 6. Измерения проводились

Зависимость температуры сверхпроводящего Рис. 16. перехода от давления для образца тантала, отожженного при температуре 2300° С.

на образце, изготовленном из тантала чистоты 99,9% с критической температурой 4,410° К. Обнаружен линейный характер уменьшения T_к

Рис. 17. Зависимость $\partial H_{\rm H}/\partial p$ от приведенной температуры для различных образцов тантала.

- Различные образцы тантала. Ο,

чина необратимого смещения Т_к, связанная, по-видимому, с пластической деформацией образца, составляла около 0,007° К. Более точные измерения в области давлений до, 10 000 атм были выполнены в работе ²⁶. Несмотря на то, что исслеобладал более дованный тантал высокой чистотой $(99,98\%, T_{\rm B} =$ =4,384° К) и измерения проводились другим методом, полученные данные прекрасно согласуются с результатами ⁶. Несколько позднее измерения были повторены тем же методом на образце тантала очень высокой чистоты, изготовленном методом электронной плавки в вакууме, превышающем 10⁻⁹ мм Hg³⁶. Температура сверхпроводящего перехода образца тантала была равна 4,482°К. Зависимость критической температу-

Ì

= - (2,4 ± 0,5) · 10^{-6°} К /атм. Вели-

ры от давления изображена на рис. 16. Величина $\partial T_{\kappa}/\partial p$ по данным работ ^{26, 36} равна — $(2.6 \pm 0.1) \cdot 10^{-6^{\circ}} \text{ K} / amm$. Все приведенные исследо-

вания указывают на независимость значения $\partial T_{\rm K}/\partial p$ у тантала от степени чистоты образцов. В работе ³⁶ было исследовано гакже влияние давления до 2000 *атм* на кривые критических полей тантала. Зависимость $\partial H_{\rm K}/\partial p$ от температуры в этой области давлений для различных образцов тантала изображена на рис. 17.

Зависимость температуры сверхпроводящего перехода от давления у двух модификаций ртути была исследована в работе²⁶. Эта зависимость изображена на рис. 18.

Влияние давления на критические поля модификаций ртути в области давлений до 3000 *атм* была исследована в ³⁷. Образцы β-ртути

Рис. 18. Зависимость критической температуры от давления для двух модификаций ртути.

— Нg α; + и ○ — два образца Нg β.

Рис. 19. Зависимость $\partial H_{\kappa}/\partial p$ от приведенной температуры для а- и β -модификаций ртути.

получались при температуре 77° К путем экструзии через отверстие диаметром 0,4 *мм* под давлением 7000 *атм*. Зависимость от температуры для α-и β-модификаций ртути изображена на рис. 19.

Таллий

У таллия наблюдается необычный характер зависимости критической температуры от давления. Критическая температура таллия возрастает в области небольших давлений, проходит через максимум и затем падает. Максимальное возрастание $T_{\rm R}$ составляет 0,8%. Данные различных авторов, измерявших изменение температуры сверхпроводящего перехода таллия под действием давления, приведены на рис. 20. При давлениях, превышающих 2000 атм, критическая температура уменьшается, причем $\partial T_{\rm R}/\partial p$ увеличивается при увеличении давления. В области давлений от 20 000 до 28 000 атм величина $\partial T_{\rm K}/\partial p$ у таллия составляет — 1,4 · 10^{-5°} K / атм. В последнее время было обнаружено, что зависимость $T_{\rm K}$ (p) у таллия в области давлений до 2000 атм имеет нерегулярный характер ³⁸ (рис. 21), а небольшие примеси ртути сильно влияют

на величину и знак $\partial T_{\kappa}/\partial p^{39}$. В работах ⁴⁰ и ⁴¹ было обнаружено, что изменение длины монокристаллического образца таллия при сверхпро-

Рис. 20. Зависимость температуры сверхпроводящего перехода таллия от давления по данным различных авторов. Данные: + − 2⁶; ○ − ³⁴; □ − ¹².

водящем переходе имеет различные знаки в направлениях, параллельном и перпендикулярном к гексагональной оси. Поскольку знак $\partial T_{\kappa}/\partial p$

4T" 103, K

определяется знаком $\Delta L/L$, было предположено¹, что возникновение максимума на кривой $T_{\kappa}(p)$ у таллия является следствием различных знаков смещения T_{κ} при одностороннем сжатии в различкристаллографических ных направлениях. Для проверки этого предположения было бы интересно определить знак $\Delta L/L$ при сверхпроводящем переходе у сплавов таллия. Если это предположение справедливо, то изменение величины и знака $\Delta L/L$ при сверх-

ŧ

проводящем переходе сплавов таллия должно коррелировать с характером и изменением их критической температуры с давлением.

Кадмий

Особый интерес представляют исследования в области сверхнизких температур, позволяющие при использовании легко достижимых давлений получать большие относительные изменения $T_{\rm K}$.

В работе ¹⁷ было исследовано влияние давления на критическое поле и температуру сверхпроводящего перехода спектрально чистого кадмия в области давлений до 27 000 *атм* при температурах 0,08—0,5° К. На рис. 22 представлены кривые зависимости критических полей от квадрата

Рис. 22. Зависимость критических полей кадмия от температуры. Кривые: 1 - p = 1 атм; 2 - p = 1500 атм; 3 - p = 3700 атм, 4 - p = 6600 атм; 5 - p = 9000 атм; 6 - p = 9340 атм; $7 - p = 12\ 050$ атм, $8 - p = 13\ 400$ атм; $9 - p = 15\ 300$ атм; $10 - p = 14\ 800$ атм; $11 - p = 20\ 800$ атм; $\Delta - p = 20\ 900$ атм; $12 - p = 25\ 800$ атм; $13 - p = 26\ 400$ атм.

температуры для различных образцов кадмия при различных давлениях. Зависимость H_к от температуры у кадмия во всей области давлений достаточно хорошо описывает- _{Тк}, Уг

ся формулой

$$H_{\mathrm{R}} = H_0 \left[1 - \left(\frac{T}{T_{\mathrm{R}}} \right)^2 \right],$$

что позволяет в первом приближении определить Т и *H*₀. Зависимость температуры сверхпроводящего перехода от давления изображена на рис. 23. Эта зависимость не является линейной. Величина $\partial T_{\rm K}/\partial p$ уменьшается при увеличении давления от значения ------------------------К /атм при p = 0 до — 1,25 · 10⁻⁵ °K/а́мм в области давлений вблизи 22 000 атм. При максимальном достигнутом давлении 26 400 атм темпера-

Рис. 23. Зависимость температуры сверхпроводящего перехода кадмия от давления и относительного изменения объема.

тура сверхпроводящего перехода уменьшается в 4,4 раза (от значения 0,543° K) и становится равной 0,124° K.

На рис. 24 построена зависимость критического поля от давления при различных температурах. Кривая 1, полученная методом экстраполяции, изображает зависимость критического поля H_0 от давления. При уменьшении температуры нелинейность в зависимости $H_{\kappa}(p)$ возрастает. При 0,45° К среднее значение $\partial H_{\rm R}/\partial p$ в интервале от нуля до 4000 атм составляет $\approx 2,2 \cdot 10^{-3}$ э/атм. При T = 0° К в области слабых

Рис. 24. Зависимость критического поля кадмия от давления п относительного изменения объема. Кривые: $1 - T = 0^{\circ}$ К, $2 - T = 0, 1^{\circ}$ К; $3 - T = 0, 14^{\circ}$ К; $4 - T = 0, 19^{\circ}$ К, $5 - T = 0, 265^{\circ}$ К; $6 - T = 0, 31^{\circ}$ К, $7 - T = 0, 45^{\circ}$ К, $9 - T = 0, 45^{\circ}$ К,

давлений $\partial H_{\rm K}/\partial p \approx 1\cdot 10^{-3}$ э/атм и в области давлений 22 000 атм величина $\partial H_{\rm K}/\partial p \approx 0.8\cdot 10^{-3}$ э/атм.

Алюминий

В самое последнее время появилось сообщение об исследовании влияния давления до 20 000 *атм* на температуру сверхпроводящего перехода алюминия ⁴². Критическая температура алюминия уменьшалась при сжатии от значения $T_{\rm K} = 1,19^{\circ}$ K до значения $T_{\rm K} = 0,71^{\circ}$ K при давлении 20 000 *атм*. Производная $\partial T_{\rm K}/\partial p$ уменьшалась при увеличении давления.

Цирконий и титан

Неожиданные результаты были получены при исследовании циркония и титана ^{18, 19}. Исследовались образцы, изготовленные из йодидного циркония и титана чистоты 99,99%.

На рис. 25 и 26 приведены некоторые кривые критических полей для исследованных образцов циркония и титана. В обоих случаях всестороннее сжатие вызывает значительное повышение $T_{\rm K}$, сопровождаемое возрастанием величины $\left(\frac{\partial H_{\rm K}}{\partial T}\right)_{T_{\rm K}}$. Возрастание $\partial H_{\rm K}/\partial T$ остается приблизительно постоянным при различных циклах сжатия и составляет как для отожженных, так и неотожженных образцов в среднем 20-25%

-

при изменении давления от нуля до 25 000 *атм.* Зависимость температуры сверхпроводящего перехода от давления для отожженных и неотожженных образцов циркония изображена на рис. 27:

Рис. 25. Кривые критических полей циркония у образцов неотожженных (сплошные кривые) и отожженных (пунктир).

Криван 1 — без давления: О— исходный образец, \times — после пятого и Δ — после восьмого циклов сжатия (образец № 1); кривая 2 — p = 3700 атм (образец № 2); кривые:3 — p == 8800 атм (образец № 2); 4 — p = 16300 атм (образец № 3); 5 — p = 23600 атм (образец № 1); 6 — без давления: П — исходный образец, \times — после второго цикла сжатия; кривая 7 — p = 18000 атм.

У неотожженных образцов циркония критическая температура сначала понижается, проходит через минимум, расположенный прибли-

Рис. 26. Кривые критических полей титана. Кривые: 1 — p = 1 атм; 2 — 0 — p = 15 500 атм, × — 900 атм, Δ — 9200 атм; 3 — p = 18 400 атм; 4 — p = 24 400 атм.

зительно при 3000 *атм*, а затем возрастает. Такой характер изменения $T_{\rm R}$ в области давлений до 10 000 *атм* удовлетворительно воспроизводится 8 уФН, т. 85, вып. 3

⁵⁰⁵

при повторных циклах сжатия. Когда давление превышает 10—12 000 атм, возникает гистерезис, при котором критическая температура после сня-

Т,°К

QВ

тия давления повышается от 0,52 до $0,55^{\circ}$ К. У отожженных образцов наблюдается более сильное возрастание T_{κ} при сжатии. Зависимость T_{κ}

Рис. 27. Зависимость температуры сверхпроводящего перехода от давления. а) Для неотожженных образцов циркония () — образец № 1; Δ — образец № 2; [] — образец № 3); б) для отожженных образцов циркония. Цифры у точек обозначают последовательность циклов сжатия.

от давления близка к линейной во всей области исследованных давлений. После снятия давления T_к необ-

ратимо повышается от значения 0,46°К (у отожженного образца) до 0,55° К (значение T_к у нагартованного неотожженного образца). Экстраполяция линейного участка на кривой $T_{\kappa}(p)$ на рис. 27, а к нулевому давлению дает значение Тк, практически совпадающее со значением Т к у отожженных образцов. По-видимому, нелинейный $T_{\kappa}(p)$ характер зависимости у неотожженных образцов циркония и возникновение гистерезиса у отожженных образцов является следствием квазигидростатичности давлений, что приводит к возникновению пластической деформации образцов. Можно ожидать, что чистое гидростатическое давление в области до 25 000 атм должно

вызывать близкое к линейному возрастание критической температуры. Аналогичный характер зависимости $T_{\kappa}(p)$ имеет место у титана ¹⁹ (рис. 28). Таким образом, характерной особенностью циркония и титана, в отличие от рассмотренных сверхпроводящих элементов, является значительное возрастание критической температуры $T_{\rm K}$ под действием давления.

Сплавы

Недавно были опубликованы данные по зависимости температуры сверхпроводящего перехода от давления для Nb₃Sn, Nb₇₅Zr⁴³₂₅, V₃Ga и V₃Si⁴⁴. У Nb₃Sn в области давлений до 11 000 атм наблюдалась квадратичная зависимость $\Delta T_{\rm R} = T_{\rm K}(p) - T_{\rm K}(0)$ от давления. В интервале давлений 2500—11 000 атм эта зависимость удовлетворительно описывается формулой $\Delta T_{\rm R} = -(0,0019p^2 + 0,02)^{\circ}$ К, где p — давление в катм.

Следует отметить, что в области малых давлений полученная величина $\partial T_{\rm K}/\partial p$ меньше, чем величина $\partial T_{\rm K}/\partial p = -2,6\cdot 10^{-5}$ °K /атм, найденная для Nb₃Sn в работе ⁴⁵, и приблизительно в 10 раз меньше, чем величина $\partial T_{\rm K}/\partial p$, определенная для Nb₃Sn в ⁴⁴. В работе ⁴⁴ наблюдалась линейная зависимость $T_{\rm K}$ от давления в интервале давлений от нуля до 1750 атм со значением $\frac{\partial T_{\rm K}}{\partial P_{\rm s}} = 14\cdot 10^{-5}$ °K /атм. Причина такого сильного расхождения результатов в настоящее время еще не выяснена. Можно лишь предполагать, что это связано с характером исследованных образдов.

У сплава Nb₇₅Zr₂₅ при давлениях до 4000 атм наблюдалось возрастание критической температуры, величина которого сильно варьировалась при различных циклах сжатия. У сплавов V₃Ga и V₃Si температура сверхпроводящего перехода линейно уменьшалась с увеличением давления до 1750 атм.

Сверхпроводимость кристаллических модификаций

Исследование сверхпроводимости кристаллических модификаций различных веществ, возникающих при высоком давлении, представляет большой интерес. Изменение сверхпроводящих свойств сверхпроводников при полиморфных превращениях, а также возникновение сверхпроводимости у кристаллических модификаций веществ, не обнаруживающих сверхпроводимости в обычных условиях (при p = 0), весьма существенны для выяснения причин, обусловливающих свойства сверхпроводников. Получение сверхпроводящих модификаций является также одним из путей изучения новых сверхпроводников. Несмотря на то, что большое число элементов и сплавов имеют одну или несколькомодификаций, устойчивых кристаллических новых при высоких давлениях, исследовано лишь небольшое их число в области давлений по ~40 000 атм.

Сверхпроводимость обнаружена у кристаллических модификаций висмута Bi II и Bi III, кристаллической модификации галлия Ga II и кристаллической модификации сплава InSb

а) Модификации висмута BiII и BiIII. Из фазовой диаграммы висмута (рис. 29) следует, что в области давлений до 40 000 *атм* существуют три модификации висмута — BiI, BiII и BiIII. Областьсуществования модификации BiII, ограниченная кривыми 1 и 2, пересекающимися при температуре около 100° К, изображена на диаграммеклином ^{46,47}. Ві І является плохим металлом и не обнаруживает сверхпроводимости до ~0,005° К ⁴⁸. Как было показано в работах ^{14, 15}, модифика-

Рис. 29. Фазовая диаграмма висмута.

ция Bi II может быть получена при температурах жидкого гелия в переохлажденном виде. Было установлено, что Bi II является сверхпроводтемпературой сверхпро-С ником водящего перехода 3,916° К при $25\,000 amm.$ Величина $\partial T_{\kappa}/\partial p$ в области давлений от 25 000 до 26 600 атм составляет — 3,2.10-5 град /атм. Кривые критических полей Ві II изображены на рис. 30. Ві II является «мягким» сверхпроводником со значением $\partial H_{\kappa}/\partial T$, очень близким к значению $\partial H_{\kappa}^{'}/\partial T$ для олова ¹⁶.

Сверхпроводимость модификации Ві III, о сверхпроводимости которой сообщалось в ¹¹, была подробно исследована в работах ¹⁴⁻¹⁶. По данным ¹⁶ Ві III является «жестким» сверхпроводником с температурой сверхпроводящего перехода \sim 7° K. Величина критического поля Ві III вблизи $T_{\rm K}$ иллюстрируется рис. 31.

Значение ($\partial H_{\kappa}/\partial T$) T_{κ} равно ~2600 э/град. Таким образом, Ві III является одним из наиболее жестких сверхпроводящих элементов. Следует

отметить, что величина $(\partial H_{\kappa}/\partial p)_{T_{\kappa}}$, так же как и величина $\partial T_{\kappa}/\partial p$, практически не зависит от давления в области 28 000—30 500 *атм*.

Резкий характер сверхпроводящих переходов у Bill и Billl свидетельствует об однородности структуры образцов.

б) Модификация Gall. Недавно была открыта сверхпроводимость кристаллической модификации галлия Gall³², устойчивой при температуре 0°С при давле*г. С*

ниях выше 13 000 *атм* (рис. 32). Модификация Ga I является сверхпроводником с температурой сверхпроводящего пере-

Рис. 33. Фазовая диаграмма InSb.

хода $1,07^{\circ}$ К. Критическая температура модификации Ga II при давлении около 35 000 *атм* равна $6,38^{\circ}$ К. Среднее значение $\partial T_{\rm K}/\partial p$ у Ga II составляет — $3\cdot10^{-5}$ ° К/*атм*.

составляет — 5.10° К/атм. Температура Дебая Ga II, оцененная по температурной зависимости электросопротивления, равна 200° К.

Рис. 32. Фазовая днаграмма галлия.

в) Модификация InSb. Фазовая диаграмма р-Т для InSb изображена на рис. 33. При давлении ~23 000 атм при комнатной температуре полупроводниковые соединения InSb переходят в металлическую модификацию InSb II. Этот переход был детально исследован в работе ⁴⁹. Малая скорость фазового превращения InSb позволяет получить металлическую фазу при достаточно низких температурах в переохлажденном состоянии путем постепенного уменьшения давления.

Такой метод получения металлической модификации InSb был применен для исследования его сверхпроводящих свойств ⁵⁰⁻⁵². Металлическая фаза InSb была получена при комнатной температуре, затем охлаждена до температуры жидкого азота, где давление было снято и образец исследовался при нулевом давлении. Измерения электрического сопротивления ^{51, 52} показали, что InSb II является сверхпроводником с температурой сверхпроводящего перехода ниже $2,1^{\circ}$ К. Измерения критического поля вплоть до $0,4^{\circ}$ К указывают на значение $H_0 \sim 1,1$ кэ⁵⁰. Магнитные измерения массивных образцов InSb II были проведены в работе ⁵³. Исследовались поликристаллические образцы диаметром около 5 и длиной около 6 мм. Кривая критических полей InSb II, изображенная на рис. 34, удовлетворительно описывается параболической зависимостью $H_{\rm R}(T)$ со значением $T_{\rm R} = 1,88 \pm 0,01^{\circ}$ К и $H_0 \approx 100$ э. Значение $\left(\frac{dH_{\rm R}}{dT}\right)_{T_{\rm R}} = -(103 \pm 0,5)$ э/ °К. Отклонения от параболической зависимость симости в области низких температур, по мнению авторов, является следствием внутренних напряжений в образце.

Исследование устойчивости сверхпроводящих модификаций

Физические соображения, послужившие поводом для исследования устойчивости кристаллических модификаций при низких температурах, заключаются в следующем.

В свое время было установлено, что пленки висмута ^{54, 55} и галлия ⁵⁶, напыленные на подложку, охлажденную до температуры жидкого гелия, обнаруживают сверхпроводимость. Пленки, возникающие при изотермической конденсации при температуре жидкого гелия, имеют аморфную структуру. Кристаллическая структура пленок возникает при повышении температуры. Эти пленки висмута сверхпроводят с $T_{\rm k} \approx$ $\approx 6^{\circ}$ K; при отогреве пленок выше 15—20° K сверхпроводимость исчезает, что связано, по-видимому, с возникновением кристаллической структуры несверхпроводящей модификации Ві I. Сравнивая данные для иленок висмута с данными для сверхпроводящей модификации висмута Ві III, можно предположить, что:

а) при конденсации на сильно охлажденную подложку висмут кристаллизуется не в своей обычной модификации Ві I, а в более плотной модификации Ві III, устойчивой в обычных условиях лишь при высоких давлениях;

б) существует некоторая новая, отличная от Ві III¹⁵ сверхпроводящая модификация висмута, устойчивая при температурах ниже 20° К уже при атмосферном давлении.

Для проверки этого предположения представляло интерес определить, может ли сверхпроводящая модификация Bi III сохраняться при низких температурах при уменьшении давления до нуля?

В опытах по исследованию устойчивости модификации BiIII при температурах жидкого гелия давление создавалось при комнатной температуре или при температуре жидкого азота, после чего прибор охлаждался до температуры жидкого гелия. При температуре 2,2° K давление постепенно уменьшалось до нуля; затем температура медленно позышалась до температуры около 10° K. Было установлено, что модификация BiIII, полученная в результате сжатия монокристаллического образца висмута, при уменьшении давления сохраняется при температурах жидкого гелия до 21 000 атм. При достижении давления 21 000 атм весь объем модификации BiIII скачкообразно переходит в несверхпроводящую модификацию Bi I. Однако при повторных циклах сжатия появляется увеличивающаяся от опыта к опыту часть объема образца, в котором модификация BiIII сохраняется при уменьшении давления до нуля. После нескольких циклов сжатия модификация Bi III сохраняется при полном снятии давления во всем объеме образцов. Сверхпроводящий переход модификации Bi III при атмосферном давлении более размыт (по сравнению с переходом модификации Bi III при давлениях, превышающих 27 000 *атм*) и смещен в область более высоких температур. Температура этого сверхпроводящего перехода равна ~ 7,6° К.

Аналогичная ситуация имеет место у галлия ³². Пленки галлия аморфной структуры обнаруживают сверхпроводимость с $T_{\rm R} = 8,4^{\circ}$ К. При нагреве пленок в области температур 20—70° К в результате их кристаллизации возникает сверхпроводящая модификация с $T_{\rm R} = 6,5^{\circ}$ К. Выше 70° К образуется устой-

чивая модификация Ga I с $T_{\rm R} = 1.07^{\circ}$ K.

Критическая температура сверхпроводящей модификации Ga II равна 6,38° К. Модификация Ga II сохраняется в области гелиевых температур при уменьшении давления до атмосферного. При этом температура ее сверхпроводящего перехода повышается до 7,5° К. Зависимость критической температуры Ga II от давления изображена на рис. 35.

Прежде всего обращает на себя внимание тот факт, что поведение сверхпроводящих модификаций Ві III и Ga II является совершенно

идентичным. Небольшое различие в экспериментальных результатах заключается в том, что устойчивая при атмосферном давлении модификация Ga II образовалась сразу же после первого цикла сжатия. Это обстоятельство является, по-видимому, следствием особенностей методики, приводящей к сильной пластической деформации образца при сжатии.

Естественно предположить, что сохранение модификаций Bi III и и Ga II при уменьшении давления до атмосферного обусловлено возникновением в образцах внутренних напряжений (дислокаций и т. п.). При повторном прохождении циклов сжатия число дислокаций в образце возрастает и, следовательно, возрастает объем устойчивой части образца.

Близкое значение критических температур сверхпроводящих пленок висмута и галлия и пластически деформированных фаз Bi III, Ga II, а также возможность существования модификаций Bi III и Ga II при атмосферном давлении в области низких температур дают основание предполагать, что сверхпроводящие пленки имеют ту же кристаллическую структуру, что и модификации Bi III и Ga II. При этом приходится допустить, что в свежеконденсированных пленках возникают внутренние напряжения. Для случая висмута величина этих напряжений составляет около 21 000 $\kappa \Gamma / cm^2$. Исчезновение сверхпроводимости у пленок, а также у модификации Bi III и Ga II при повышении температуры является, по-видимому, следствием уменьшения величины внутренних напряжений в результате отжига.

Как отмечалось выше, модификация InSb II также устойчива в области низких температур при атмосферном давлении. Модификация

Рис. 35. Зависимость температуры сверхпроводящего перехода Ga II от давления.

Образцы: $\frac{R_{10^{\circ} \text{ K}}}{R_{300^{\circ} \text{ K}}} = 1,25 \cdot 10^{-2}$ (O); 1,43 · 10⁻² (D); 2,0 · 10⁻² (Δ). сохраняет устойчивость до температуры $\sim 220^{\circ}$ К. Обратный переход в неметаллическую фазу происходит с увеличением объема на $\sim 18,5\%$ и сопровождается разрушением образца.

На основании изложенного выше можно ожидать, что пленки InSb, полученные напылением при низких температурах, окажутся сверхпроводящими.

IV. ВЛИЯНИЕ ДАВЛЕНИЯ И МИКРОТЕОРИЯ СВЕРХПРОВОДИМОСТИ

Созданная в 1957 г. микротеория сверхпроводимости ⁵⁷ позволяет выразить измеряемые на опыте величины через некоторые микрохарактеристики металла. Особое значение при этом имеет формула для температуры $T_{\rm K}$ сверхпроводящего перехода

$$T_{\rm R} = \frac{\Delta (0)}{3,52k} = 0.85 \,\theta \, e^{-\frac{1}{NV}},\tag{2}$$

где Δ (0) — ширина щели в энергетическом спектре при $T = 0^{\circ}$ К, θ температура Дебая, N — плотность состояний на поверхности Ферми для рассматриваемого металла в нормальном состоянии *) и V — параметр, характеризующий межэлектронное взаимодействие. Заметим, что коэффициент 0,85 в формуле (2) носит условный характер, и мы его оставляем лишь для установления соответствия с другими обзорами (см. ^{42, 58}).

В рамках теории ⁵⁷ значение V не вычисляется, а параметры N и θ определяются по данным, полученным для металла в нормальном состоянии, с использованием модели свободных электронов и т. п. Правда, имеется целый ряд попыток ⁵⁹⁻⁶⁴ продвинуться дальше и вычислить параметр V, или NV, на основе более детального учета взаимодействия между электронами в металле. Все эти попытки, однако, значительно менее убедительны и надежны, чем сама микротеория сверхпроводимости ⁵⁷ и вытекающая из нее формула (2) для $T_{\rm K}$.

В связи с этим особый интерес представляет всестороннее сопоставление теории с опытом именно в плане анализа зависимости T_{κ} от различных факторов и в первую очередь от давления.

Если основываться на формуле (2), для чего имеются все основания, то зависимость $T_{\rm K}$ от *p* определяется, очевидно, зависимостью от давления величин θ , *N* и *V*. Зависимость дебаевской температуры θ от давления приближенно может быть получена из формулы Грюнайзена для коэффициента объемного теплового расширения (см. ^{33,65})

$$\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \xi \chi \frac{C_v}{v} , \qquad (3)$$

где $\xi = -\frac{d\ln\theta}{d\ln v}$, $\chi = -\frac{1}{v} \left(\frac{\partial v}{\partial p}\right)_T$ — изотермическая сжимаемость, C_v — теплоемкость вещества объемом v, измеренная при постоянном объеме. Из формулы (3) следует, что

$$\frac{d\ln\theta}{dp} = \frac{av}{C_v} , \qquad (4)$$

т. е. дебаевская температура должна возрастать при сжатии. Возрастание в при сжатии, которое удовлетворительно объясняет уменьшение

^{*)} Обычно вместо N употребляют обозначение N(0), явно подчеркивая тем самым, что плотность состояний N берется на поверхности Ферми. Ниже, однако, будет использоваться обозначение N(p), где p — давление, причем подразумевается, что N(p) относится к граничному значению энергии Ферми для всех рассматриваемых значений p.

электрического сопротивления под действием давления у большинства металлов в нормальном состоянии ⁶⁶, должно в свою очередь приводить к увеличению температуры сверхпроводящего перехода (см. формулу (2)). Значения $d \ln \theta / dp$, вычисленные поформуле (4), приведены в табл. I.

Необходимо, однако, иметь в виду, что определение величины $d \ln \theta / dp$ по формуле (4) носит оценочный характер и справедливо лишь для металлов, не обладающих значительной анизотропией.

Сравнивая значения

$$rac{d\ln\theta}{dp} = rac{1}{ heta} rac{\partial heta}{\partial p} \quad \mathrm{M} \quad rac{1}{T_{\mathrm{K}}} rac{\partial T_{\mathrm{K}}}{\partial p},$$

можно видеть, что в большинстве случаев знак $\partial T_{\rm h}/\partial p$ не соответствует знаку $\partial \theta/\partial p$, а относительная величина изменения θ при сжатии, как правило, существенно меньше соответствующего изменения критической температуры.

Таким образом, изменение дебаевской температуры не является фактором, определяющим зависимость критической температуры от давления.

Как известно, электронная часть теплоемкости металлов в нормальном состоянии, рассчитанная на единицу объема, равна

$$c_{en} = \gamma T = \frac{2}{3} \pi^2 k^2 N T.$$
(5)

Отсюда следует, что, измеряя электронную часть теплоемкости, можно найти плотность состояний N. Для сверхпроводящих металлов определить γ , а следовательно, и N можно не только по данным калориметрических измерений, но и по кривым критических полей. Последний метод особенно удобен, когда речь идет о нахождении зависимости N от p, так как измерение критических полей для сверхпроводников в условиях высоких давлений—несравненно более простая задача, чем проведение калориметрических измерений при низких температурах и высоких давлениях.

Из основного уравнения термодинамики сверхпроводников⁷⁷

$$G_n(0) - G_s(0) = \frac{v H_{\mathrm{K}}^2}{8\pi} \tag{6}$$

 $(G_n$ и G_s — свободные энергии в нормальном и сверхпроводящем состояниях, v — объем) следует, что разность теплоемкостей электронов в сверх-проводящем и нормальном состояниях равна

$$C_{es} - C_{en} = \frac{vT}{4\pi} \left[H_{\rm R} \left(\frac{d^2 H_{\rm R}}{dT^2} \right)_p + \left(\frac{dH_{\rm R}}{dT} \right)_p \right].$$
(7)

Зависимость H_{κ} от T в общем случае с достаточной точностью можно записать в виде многочлена

$$\frac{H_{\rm K}(T)}{H_0} = h(t) = 1 - \sum_{n=2}^{N} a_n t^n, \tag{8}$$

где $t = T/T_{\text{к}}$ и $\sum_{n=2}^{n} a_n = 1.$ Подставляя (8) в (7), получаем

$$\frac{c_{es}}{T} - \frac{c_{en}}{T} = \frac{1}{4\pi} \frac{H_0^2}{T_{\kappa}^2} \left\{ (1 - a_2 t^2 - \dots) (2a_2) + (-2a_2 t - \dots) \right\}.$$
(9)

Поскольку при $T \to 0$ при самых общих предположениях $c_{es}/T \to 0$, коэффициент $\gamma = c_{en}/T$ равен

$$\gamma = \frac{1}{2\pi} a_2 \frac{H_0^2}{T_{\rm K}^2} \,. \tag{10}$$

Это выражение является точным и позволяет вычислить γ , если известны значения a_2 , H_0 и $T_{\rm R}$. Для параболической зависимости $H_{\rm R}$ от T формула (10) упрощается, так как $a_2 = 1$. В общем случае в (10) $a_2 \neq 1$, причем величина разности $1 - a_2$ характеризуется степенью отклонения кривой $H_{\rm R}(T)$ от параболы. Величину a_2 можно определить, исследуя отклонение экспериментальной зависимости $H_{\rm R}(T)$ от параболической. Таким образом, прецизионные измерения зависимости $H_{\rm R}(T, p)$ в широком интервале температур позволяют дополнительно к зависимости $T_{\rm R}(p)$ получить зависимость плотности состояний от давления.

Для определения производной $d\gamma/dp$ можно воспользоваться также данными по измерению теплового расширения при низких температурах. Как было показано в ряде работ (см., например, ^{67, 68}), коэффициент теплового расширения с металлов в нормальном состоянии при низких температурах достаточно хорошо описывается формулой

$$\alpha = \alpha_e + \alpha_g = AT + BT^3, \tag{11}$$

где a_e и a_g — вклады, вносимые в тепловое расширение электронами и решеткой соответственно. Величина коэффициента a_e определяется зависимостью электронной части энтроции от давления:

$$\alpha_e = -\frac{1}{v} T\left(\frac{\partial \gamma}{\partial p}\right)_{\mathbf{T}}.$$
(12)

В отличие от рассмотренного выше способа определения зависимости N от давления, формула (12) позволяет определить величину и знак производной $\frac{\partial \gamma}{\partial p}$ лишь при p = 0, так как определение a_e у сжатых образцов, особенно при высоких давлениях, связано с едва ли преодолимыми трудностями. Заметим, что в общем случае, особенно в области больших давлений, функция N(p) не является линейной и может иметь нерегулярный характер.

Имеющийся экспериментальный материал, который можно было обработать по рассмотренной схеме в достаточно широкой области давлений, весьма ограничен, и поэтому в настоящее время практически нет данных о зависимости N от давления. В большинстве опубликованных работ (см., например, ^{58, 69}) величина $\frac{\partial \gamma}{\partial p}$ определяется при малых давлениях p по кривым $H_{\kappa}(T)$ в предположении, что a_2 не изменяется при давлении, а также по формуле (12).

Параметр V (см. формулу (2)) при довольно общих предположениях ⁵⁹ можно представить как разность двух членов, характеризующих соответственно притяжение электронов в результате электрон-фононного взаимодействия и экранированное кулоновское отталкивание.

Критерий сверхпроводимости ⁵⁷ заключается в том, чтобы V было положительно, что означает преобладание электрон-фононного притяжения над кулоновским отталкиванием.

В настоящее время непосредственное экспериментальное определение зависимости параметра V от давления не представляется возможным. Однако эта зависимость может быть получена из формулы (2), если функции θ (*p*) и N (*p*) определены описанным выше способом.

При рассмотрении приближенной модели, представляющей систему электронов и ионов, взаимодействующих с помощью экранированного

кулоновского поля, в ⁵⁹ было найдено, что увеличение среднего межэлектронного расстояния r_e и валентности понов Z способствует появлению сверхпроводимости. С этой точки зрения всестороннее сжатие, приводящее к уменьшению r_e , должно вызывать понижение критической температуры, а при некотором критическом давлении — исчезновение сверхпроводимости. Последнее отвечает обращению параметра V в нуль. К сожалению, еще нельзя утверждать, что возможность обращения параметра V в нуль при конечном давлении

строго доказана теоретически.

В последнее время появился ряд работ $^{60-62}$, в которых кулоновское и электрон-фононное взаимодействие в металлах рассматривается более детально. При этом, однако, основное внимание уделяется изотопическому эффекту, а вопрос о зависимости $T_{\rm K}$ от давления не обсуждается.

В подобных условиях, очевидно, приходится искать какие-то эмпирические закономерности, а также обрабатывать экспериментальные данные на основе некоторых дополнительных предположений. Одним из основных вопросов, которые привлекают внимание, является выяснение характера зависимости $T_{\kappa}(p)$.

На основании экспериментальных данных в работах ^{58, 70, 71} была выявлена линейная связь между $d \ln (T_{\rm K}/\theta)/d \ln v$ и $\ln (\theta/T_{\rm K})$ для непереходных металлов, за исключением таллия (рис. 36). Это значит, что для указанных металлов можно написать

$$\frac{d\ln\left(T_{\rm K}/\theta\right)}{d\ln v} = \varphi_v \ln \frac{0.85\theta}{T_{\rm K}} + C_{\rm i},\qquad(13)$$

○ — Непереходные металлы; ● — переходные металлы.

где φ_v и C_1 не зависят от объема v. Для свинца, α - и β -ртути, олова, индия, галлия, цинка и кадмия ⁵⁸

$$\varphi_v = 2.5 \pm 0.6. \tag{14}$$

Используя формулу (2), имеем $\ln (T_{\rm k}/\theta) = -NV + \ln 0.85$ и, следовательно, учитывая (13), имеем

$$\frac{d\ln\left(T_{\rm K}/\theta\right)}{d\ln v} = -\frac{dNV}{d\ln v} = \varphi_v NV + C_1.$$

Из рис. 36 можно заключить, что постоянная C_1 мала; если положить, что $C_1 = 0$ и пренебречь $\ln 0.85$ по сравнению с $\ln (\theta/T_{\rm K})$, то в согласии с ⁴², из (13) получаем

$$\ln\left(\frac{T_{\rm K}}{\theta}\right) = C_2 v^{-\varphi_v};\tag{15}$$

постоянная $C_2 < 0$.

Согласно формуле (15) температура T_{κ} с увеличением давления (т. е. с уменьшением объема *v*) стремится к нулю лишь при $v \to 0$.

Следует заметить, однако, что нам неизвестны какие-либо основания теоретического характера, свидетельствующие в пользу

применимости формул (13) или (15), как вообще, так и в особенности в сколько-нибудь широком интервале давлений. На недопустимость использовать формулу (15) при больших давлениях указывают данные для кадмия. Именно, у кадмия (см. рис. 23) наблюдается более сильное понижение критической температуры при сжатии, чем это следует из формулы (15). При давлении около 26 000 *атм* изменение T_{μ} у кадмия, вычисленное по

Рис. 37. Экспериментальные значения $\varphi = \frac{\partial \ln NV}{\partial \ln v}$ как функция ζ . • Переходные металлы, О — непереходные металлы.

формуле (15), оказывается приблизительно в три раза меньше экспериментально наблюдаемого значения.

У переходных металлов величина ϕ_r вообще не является постоянной (см. рис. 36).

В работе ⁵⁸ отмечается некоторая корреляция между величиной ϕ_v и параметром в формуле для изотопического эффекта

$$T_{\rm w} \sim M^{-0,5(1-\zeta)} (M$$
 — масса изотопа). (16)

Связь между φ_v и ζ для непереходных и переходных металлов иллюстрируется рис. 37. На основании этих данных авторы работы ⁵⁸ считают, что увеличение ζ у переходных металлов является основной причиной отклонения функции φ_v от постоянного значения. Связь параметра ζ со структурой электронного энергетического спектра металлов рассматривается в ⁶⁰⁻⁶². В частности, в ⁶¹ вычисляются значения ζ для большого числа непереходных и переход-

ных металлов. Однако никакого теоретического обоснования функциональной зависимости фот ζ в этих работах не содержится.

В работах ¹⁷⁻¹⁹ в согласии с ⁵⁹ было предположено, что у непереходных металлов понижение $T_{\rm K}$ с давлением является следствием главным образом уменьшения параметра V при приблизительно постоянном значении N (формула (2)) и что при некотором критическом давлении $p_{\rm K0}$ параметр V может обратиться в нуль, что должно привести к исчезновению сверхпроводимости. В рамках этого же предположения вопрос об учете влияния давления в теории фазовых переходов II рода применительно к сверхпроводящему переходу рассмотрен в работе ⁷². Из этой работы следует, что вблизи критического давления $p_{\rm K0}$ можно ожидать, что зависимость $T_{\rm K}$ от p будет выражаться формулой

$$T_{\rm R}(p) = A \exp\left(-\frac{a}{p_{\rm K0}-p}\right), \qquad (17)$$

i

где A, a и $p_{\kappa 0}$ — постоянные величины. Очевидно, что при давлении $p = p_{\kappa 0}$ температура T_{κ} обращается в нуль. Для сравнения экспериментальных данных с формулой (17) необ-

Для сравнения экспериментальных данных с формулой (17) необходимы данные, полученные в широком интервале давлений в области температур, близких к 0° К, где применение формулы (17) только и может быть справедливо. Из всех известных в настоящее время данных такое сравнение можно провести лишь для кадмия ¹⁷, и то недостаточно точно. Если считать, что формула (17) применима в этом случае во всем интервале давлений (рис. 23), то получаются значения $A \approx 5.6$, $a \approx 16500$ и $p_{\rm R0} \approx 70000$ атм. Насколько эти значения неточны, видно из результатов другой обработки данных. Именно, воспользуемся значениями $T_{\rm K}$ (p) при давлениях в интервале 15000 $\ll p \ll 26000$ атм (можно думать, что формула (17) тем точнее, чем *р* ближе к $p_{\rm R0}$). Тогда $A \approx 2,4$, $a \approx 90\ 600$ и $p_{\rm R0} \approx 57\ 000$ *атм*. Поэтому наиболее вероятным значением критического давления, при котором щель в энергетическом спектре у сверхпроводящего кадмия захлопывается и он становится несверхпроводником, является давление, расположенное в области 57 000 $\leqslant p_{\rm R0} \leqslant 70\ 000$ *атм*.

При $T \neq 0^{\circ}$ К ширина щели Δ (*T*) меньше Δ (0), и «захлопывание» щели должно происходить еще при положительном значении *V*. В работе ⁷² было показано, что при $T \neq 0$

$$\Delta(T, p) \propto \sqrt{p_{\kappa} - p}, \quad H_{\kappa} \propto (p_{\kappa} - p), \tag{18}$$

где $p_{\rm R}(T)$ — давление, при котором происходит сверхпроводящий переход при заданной температуре T. Формула (18) находится в хорошем согласии с экспериментальными данными. На рис. 13, 14 и 24 изображены зависимости $H_{\rm R}$ от давления для кадмия ¹⁷, олова ³¹ и индия ³⁴. Видно, что при $T \neq 0$ зависимость $H_{\rm R}$ от p (для давлений, близких к $p_{\rm R}$) действительно является линейной. Заметим, что высказанные соображения о механизме влияния давления на $T_{\rm R}$ у непереходных металлов не противоречат соотношению (14), которое при $C_1 = 0$ имеет вид

$$\varphi_v = -\frac{\partial (NV)}{\partial v} \frac{v}{NV} = 2.5 \pm 0.6.$$

При $N \approx$ const это соотношение означает, что относительные изменения параметра V при сжатии у непереходных металлов в области небольших давлений близки между собой.

Легко видеть, что при увеличении давления φ_{o} должно возрастать за счет уменьшения V. При V $\rightarrow 0 \varphi_{V} \rightarrow \infty$, так как очень мало вероятно, что при V = 0 производная $\frac{\partial V}{\partial v}$ обращается в нуль.

У переходных металлов, к числу которых относится цирконий, тантал, титан и др., особенно большую роль может играть изменение плотности состояний на поверхности Ферми при сжатии. Данные, полученные в работе ⁷³ при исследовании связи электронной темплоемкости у с Т. у большого числа сверхироводящих переходных металлов и их сплавов, указывают на очень слабую зависимость параметра V у переходных металлов и их сплавов от эффективного числа валентных электронов n_в. Согласно ⁷³ критические температуры переходных металлов и их сплавов определяются в основном плотностью d-электронов. С этой точки зрения возрастание Т_к у циркония и титана под действием давления должно происходить в результате увеличения N. На увеличение N при сжатии циркония и титана указывает также изменение наклона кривых критических кония и титана указывает такие полети полети полети (рис. 25 и 26). Среднее обратимое увеличение $\left(\frac{\partial H_{\rm R}}{\partial T}\right)_{T_{\rm R}}$ у циркония и титана при изменении давления от 0 до 20 000 атм составляет 20-25%. Этого вполне достаточно для объяснения необходимого увеличения $T_{\rm K}$ при сжатии. Такая интерпретация результатов ^{18, 19} хорошо согласуется также с работой ⁷⁴, в которой на основании измерений электронной теплоемкости была найдена зависимость плотности состояний d-электронов переходных металлов от числа валентных электронов на атом n_в. В области, близкой к цирконию и титану, N растет с ростом числа валентных электронов (рис. 38). Поэтому можно думать, что N у этих металлов возрастает также при сжатии. Если считать, что зависимость N от p определяется кривыми типа кривых, изображенных на рис. 38, то знак производной $\partial T_{\kappa}/\partial p$ должен определяться положением рассматриваемого сверхпроводника на этих кривых. У сверхпроводников с $\partial N/dn_{\rm B} > 0$ температура сверхпроводящего перехода при сжатии должна возрастать, а у сверхпроводников с $\partial N/\partial n_{\rm B} < 0$ — падать. Это правило хорошо выполняется для всех исследованных переходных металлов и их сплавов. Именно, температура сверхпроводящего перехода у циркония, титана, рутения, Nb₇₅Zr₂₅ растет при сжатии, а для тантала, Nb₃Sn, V₃Ga, V₃Si падает; у молибдена ⁴² $\partial T_{\rm K}/\partial p$ очень мала. В пользу рассмотренной выше точки зрения ^{18, 19} свидетельствует также хорошее согласие данных рис. З8 с экспериментальной зависимостью $T_{\rm K}$ от числа валентных электронов, полученной в статье ⁷⁵, хотя следует иметь в виду, что эта зависимость выполняется только для металлов с неизменной зонной структурой ⁶². На основании данных по зависимости у от $n_{\rm B}$ ⁷³ положи-

Рис. 38. Зависимость плотности состояний N (0) от числа валентных электронов. \triangle , \bigcirc — данные ⁷³ и ⁷⁴.

тельный знак $\partial T_{\kappa}/\partial p$ должен наблюдаться у $Zr_{60}Nb_{40}$ ($T_{R} = 8.8^{\circ}$ K), Mo₉₅Re₅ ($T_{R} = 1.5^{\circ}$ K), Mo₉₀Re₁₀ ($T_{R} =$ $=2.9^{\circ}$ K), Mo₈₀Re₂₀ ($T_{\kappa}=8.5^{\circ}$ K), $Mo_{75}Re_{25}(T_{\rm K} = 10,5^{\circ} {\rm K}), Mo_{70}Re_{30}(T_{\rm K} =$ $= 10,8^{\circ}$ К). У Мо ($T_{\kappa} = 0,95^{\circ}$ К) и сплавов Nb₂₀Mo₈₀ и Mo₆₀Re₄₀ значения $\partial T_{\rm K}/\partial p$ в области малых давлений цолжно быть очень малы. У остальных сплавов, исследованных в работе 73, должен наблюдаться обычный отрицательный знак $\partial T_{\kappa}/\partial p$. Из аналогичных соображений можно также ожидать возрастания критической температуры у сплавов NbRe в пределах концентраций компонент Nb₃₈Re₆₂ — Nb₂₀Re₈₀. Для этих сплавов по данным ⁶² $\partial N / \partial n_{\rm B} > 0$.

К сожалению, отсутствуют данные по величине электронной теплоемкости у сплавов Bi₃Ni и Bi₄Rh, знак $\partial T_{\kappa}/\partial p$ которых также положительный.

Исключением из описанной выше схемы является поведение интерме-

таллического соединения $\operatorname{Bi}_2 K$, имеющего положительный знак $\partial T_{\mathbf{R}} / \partial p$ и не являющегося переходным металлом, а также поведение таллия в области малых давлений. В отличие от таллия, у которого аномальная зависимость $T_{\mathbf{R}}(p)$ может быть связана с резко выраженной анизотропией, соединение $\operatorname{Bi}_2 K$ обладает кубической решеткой. Возможно, что в этом случае имеет место возрастание параметра V при сжатии.

При использовании экспериментальных данных для переходных металлов и их сплавов надо иметь в виду, что эти данные, полученные при малых давлениях, сильно зависят от состояния образцов, могут быть очень неточными и не отражающими истинное поведение этих металлов в области больших давлений. Действительно, как видно из рис. 27 и 28, вид кривой $T_{\rm K}$ (*p*) у переходных металлов в области малых давлений сильно зависит от состояния образцавлений сильно зависит от состояния образца (внутренних напряжений, числа дислокаций и т. п.) и поэтому не характеризует его свойства. В частности, для нагартованного образца циркония, у которого в области малых давлений $\partial T_{\rm K}/\partial p < 0$, а в области больших давлений $\partial T_{\rm K}/\partial p > 0$.

$\partial H_{\rm B}/\partial p > 0$, на основании термодинамического соотношения

$$\frac{v_n - v_s}{v_s} = \frac{H_{\rm K}}{4\pi} \left(\frac{\partial {\rm H}_{\rm K}}{\partial p} \right)$$

изменение объема $v_n - v_s$ при сверхпроводящем переходе (при p = 0) должно быть отрицательно.

Согласующиеся данные могут быть получены лишь при исследовании ненапряженных монокристаллических образцов переходных металлов. О сказанном нужно помнить, когда для определения величины $(\partial H_{\rm K}/\partial p)_{T_{\rm K}}$ используются данные по изменению объема v несжатого образца при сверхпроводящем переходе у переходных металлов и их сплавов.

V. НЕКОТОРЫЕ ЗАМЕЧАНИЯ О ПЕРСПЕКТИВАХ ДАЛЬНЕЙШИХ ИССЛЕДОВАНИЙ

1. Большое значение для выяснения истинной картины влияния давления на сверхпроводящие свойства металлов имеют прецизионные исследования кривых критических полей в широкой области давлений и температур, включая сверхнизкие температуры. В результате можно будет выяснить зависимость плотности состояний на границе Ферми N от давления. Экспериментальные результаты в этой области очень ограничены, и поэтому дальнейшие исследования в данном направлении представляются весьма перспективными.

2. Очень важным является вопрос о характере зависимости $T_{\rm R}$ от p при больших относительных изменениях критической температуры. Особенно существенно выяснить, можно ли под действием давления перевести сверхпроводник (в рамках одной и той же кристаллической модификации) в несверхпроводящее состояние? Несмотря на то, что данные по кадмию указывают на возможность исчезновения сверхпроводимости при сжатии металла, этот вопрос еще следует считать открытым.

3. Для получения ответа на эти вопросы возникает необходимость в разработке новых методов получения высоких и достаточно однородных давлений при низких и сверхнизких температурах. Достигнутые в настоящее время давления, удовлетворяющие таким требованиям, не превышают 30 000 *атм*, что является явно недостаточным. Для однозначного решения неясных вопросов необходимо расширить интервал достижимых давлений до 80 000 \div 100 000 *атм*.

4. В связи с необходимостью расширения области доступных давлений особое значение приобретают работы по низкотемпературной барометрии — разработке эффективных методов измерения давления непосредственно при низких температурах. Очень удобным инструментом такого рода являются сверхпроводящие манометры, применение которых значительно упрощает задачу. Однако использование сверхпроводящих манометров требует знания зависимости критической температуры барометрического вещества от давления. К сожалению, сейчас нет точных данных о зависимости T_{κ} от p в области давлений, превышающих 10 000 *атм*, ни для одного сверхпроводника. Весьма перспективным путем для проведения градуировочных измерений являются, по-видимому, методы с использованием твердых газов: гелия и водорода; дальнейшее развитие этих методов крайне желательно.

5. Интересным направлением дальнейших исследований являются поиски новых сверхпроводящих модификаций, устойчивых при высоких давлениях, и изучение их свойств. По мере расширения области достижимых давлений будут открываться все более широкие возможности для проведения такого рода исследований.

6. В области уже достигнутых давлений представляются интересными исследования свойств сверхпроводящих сплавов переменного состава из переходных и непереходных металлов, главным образом с целью определения знака $\partial T_{\kappa}/\partial p$ и сопоставления этих данных с данными по зависимости $\gamma = c_{en}/T$ от эффективной концентрации валентных электронов n_в, которая может быть получена путем тепловых измерений при низких температурах.

Изучение влияния давления на сверхпроводящие свойства металлов является важным и эффективным методом исследования и, несомненно, будет привлекать к себе все большее внимание.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- К. Свенсон, Физика высоких давлений, М., ИЛ, 1963.
 Б. Г. Лазарев, Л. С. Кан, ЖЭТФ 14, 439, 461 (1944).
 Н. Б. Брандт, А. К. Томашик, ПТЭ, № 2, 113 (1958).
 Н. Е. Алексеевский, Ю. П. Гайдуков, ЖЭТФ 29, 898 (1955).
- 5. J. S. Dugdale, J. A. Hulbert, Canad. J. Phys. 35, 72 (1957).
- 6. D. H. Bowen, Proc. 6th Intern. Conf. on Low Temp. Phys. and Chem., Madison, 1958, стр. 337. 7. Н. Б. Брандт, Д. Балла, ПТЭ, № 6, 135 (1962); Cryogenics 3, 213
- 1963).
- 8. Д. Балла, Н. Б. Брандт, ЖЭТФ 47, 1653 (1964).

- 1903).
 8. Д. Балла, Н. Б. Брандт, ЖЭТФ 47, 1653 (1964).
 9. Е. С. Ицкевич, ПТЭ, № 4, 148 (1962).
 10. Л. Ф. Верещагин, А. И. Лихтер, ДАН СССР 103, 191 (1955).
 11. Р. F. Chester, G. O. Jones, Phil. Mag. 44, 1281 (1953).
 12. D. H. Bowen, G. O. Jones, Proc. Roy. Soc. A254 (No. 1279), 522 (1960).
 13. Н. Б. Брандт, ПТЭ, № 2, 131 (1960).
 14. Н. Б. Брандт, Н. И. Гинзбург, ФЭТФ 39, 1554 (1960).
 15. Н. Б. Брандт, Н. И. Гинзбург, ФЭТФ 2, 3461 (1961).
 16. Н. Б. Брандт, Н. И. Гинзбург, ЖЭТФ 44, 478 (1963).
 17. Н. Б. Брандт, Н. И. Гинзбург, ЖЭТФ 44, 1876 (1963).
 18. Н. Б. Брандт, Н. И. Гинзбург, ЖЭТФ 44, 1876 (1963).
 19. Н. Б. Брандт, Н. И. Гинзбург, ЖЭТФ 46, 1216 (1964).
 19. Н. Б. Брандт, Н. И. Гинзбург, ЖЭТФ 46, 1216 (1964).
 19. Н. Б. Брандт, С. А. Swenson, Phys. Rev. 97, 578 (1955).
 21. С. А. Swenson, J. Chem. Phys. 27, 1656 (1957).
 23. J. W. Stewart, C. A. Swenson, Phys. Rev. 94, 1096 (1954).
 24. J. Hatton, Phys. Rev. 100, 681 (1955).
 25. J. Hatton, Phys. Rev. 103, 1167 (1956).
 26. L. D. Jennings, C. A. Swenson, Phys. Rev. 112, 31 (1958).
 27. J. W. Stewart, Phys. Chem. Solids 1, 146 (1956).
 28. Современная техника высоких давлений, М., Изд-во «Мир», 1964.
 29. В. И. Хоткевич В. А. Шарраков, Я. Б. Бенкин ШТЭ. № 5.

- Современная техника высоких давлений, М., Изд-во «Мир», 1964.
 В. И. Хоткевич, Докторская диссертация (ИФП АН СССР, 1952).
 В. И. Хоткевич, В. А. Перваков, Я. Е. Генкин, ПТЭ, № 5, 201 (1961); Cryogenics 2 (5), 281 (1962).
 Н. Е. Алексеевский, Н. Б. Брандт, Т. И. Костина, Изв. АН СССР, сер. физ. 16 (3), 233 (1952).
 W. Buckel, W. Gey, Zs. Phys. 176 (4), 336 (1963).
 R. I. Beecroft, С. А. Swenson, J. Phys. Chem 18 (4), 329 (1961).
 H. Б. Брандт, Н. И. Гинзбург, Тезисы докладов на XI Всесоюзном совещании по физике низких температур (Минск, 1964).
 Л. С. Кан, Б. Г. Лазарев, В. И. Макаров, ЖЭТФ 40, 457 (1961).
 E. Schirber, C. A. Swenson, Phys. Rev. 123, 1115 (1961).
 E. Г. Лазарев, Л. С. Лазарева, В. И. Макаров, ЖЭТФ 44, 481 (1963).

- (1963)
- 39. Б. Г. Лазарев, Л. С. Лазарева, В. И. Макаров, Тезисы X Всесо-юзного совещания по физике низких температур (Москва, 1963).

ì

- 40. J. L. Olsen, H. Rohrer, Helv, Phys. Acta 30, 49 (1957).
- G. D. Cody, Phys. Rev. 111, 1078 (1957).
 J. L. Olsen, E. Bucher, M. Zevy, J. Muller, E. Coreuzwit, T. Geballe, Rev. Mod. Phys. 36 (1), 168 (1964).

- 43. Е. С. Ицкевич, М. А. Ильина, В. А. Сухопаров, ЖЭТФ 45 (5),
- 43. Е. С. Ицкевич, М. А. Ильина, В. А. Сухопаров, ЖЭТФ 45 (5), 1378 (1963).
 44. С. В. Мüller, Е. J. Saur, Rev. Mod. Phys. 36 (1), 103 (1964).
 45. Б. Г. Лазарев, Л. С. Лазарева, О. Н. Овчаренко, А. А. Мацакова, ЖЭТФ 43, 2309 (1962).
 46. Н. Б. Брандт, Н. И. Гинзбург, ПТЭ 5, 161 (1962); Cryogenics 3, 209 (1963).
 47. Е. Р. Випdу, Phys. Rev. 110, 315 (1958).
 48. N. Kürti, F. Simon, Proc. Roy. Soc. 151, 6 (1935).
 49. А. Jayaraman, R. C. Newton, G. C. Kennedy, Nature 191, 1288 (1961).
 50. А. J. Darnell, W. F. Libby, Science 139, 1301 (1963).
 51. S. Geller, D. B. Mc Whan, G. W. Hull, Jr., Science 140, 62 (1963).
 52. H. E. Bömmel, A. J. Darnell, W. F. Libby, B. R. Tittman, Science

- 52. H. E. Bömmel, A. J. Darnell, W. F. Libby, B. R. Tittman, Science 139, 1301 (1963).

- 139, 1001 (1963).
 53. Т. Т. S tromberg, C. A. Swenson, Phys. Rev. 134, A21 (1964).
 54. R. Hilsch, Rec. Intern. Conf. on Low Temp. Phys. Oxford, 1951, crp. 119.
 55. H. B. Заварицкий, ДАН СССР 86, 687 (1952).
 56. W. Buckel, R. Hilsch, Z. Phys. 138, 109 (1954).
 57. J. Bardeen, L. Cooper, J. Schriffer, Phys. Rev. 106, 162 (1957);
 ¹⁰. Bardeen, L. Cooper, J. Schriffer, Phys. Rev. 106, 162 (1957); Дж. Бардин, Дж. Шрифер, Новое в изучении сверхпроводимости, М., Физматгиз, 1962.
- 58. J. L. Olsen, K. Andres, H. Meier, H. de Salaberry, Zs. Natur-forsch. 18a, 125 (1963).
- 59. D. Pines, Phys. Rev. 109, 280 (1958). 60. P. Morel, P. W. Anderson, Phys. Rev. 125, 1263 (1962).

- 61. J. W. Garland, W. Janus, Phys. Rev. **11**, 114 (1963). 62. E. Bücher, F. Heiniger, J. Müller, Phys. Cond. Mat. **2** (3), 210 (1964). 63. J. Peretti, Phys. Letts. **2**, 275 (1962). 64. J. Condo, Progr. Theor. Phys. (Kyoto) **29**, 1 (1963). 65. Ю. Н. Рябинин, К. П. Роднонов и Е. С. Алексеев, ЖТФ **34** (11), 1913 (1964).
- 66. P. W. Bridgman, The Physics of High Pressure, London, 1949.

- 66. P. W. Bridgman, The Physics of High Pressure, London, 1949.
 67. G. K. White, Cryogenics 3, 292 (1962).
 68. G. K. White, Phil. Mag. 7, 271 (1962).
 69. M. Garfunkel, D. E. Mapother, Phys. Rev. 122, 459 (1961).
 70. H. Rohrer, Helv. Phys. Acta 33, 675 (1960).
 71. J. L. Olsen, H. Rohrer, Helv. Phys. Acta 33, 872 (1960).
 72. B. J. Гинзбург, ЖЭТФ 44, 2104 (1963).
 73. F. J. Morin, J. P. Maita, Phys. Rev. 129, 1115 (1963).
 74. J. Daunt, Bc6. Progr. in Low Temp. Phys, vol. 1, Amsterdam, 1955, crp. 202.
 75. B. Matthias, Bc6. Progr. in. Low. Temp. Phys., vol. 2, Amsterdam, 1957.
 76. H. E. Алексеевский, И. И. Лифанов, ЖЭТФ 30, 405 (1956).
 77. Э. А. Линтон, Сверхпроводимость, М., Иад-во «Мир», 1964, crp. 13.
 78. D. Gross, J. L. Olsen, Cryogenics 1, 91 (1960).
- 79. B. R. Coles, Rev. Mod. Phys. 36, 139 (1964).
- 80. J. K. Hulm, R. D. Blaugher, Phys. Rev. 123, 1569 (1961).
- 81. J. G. Daunt, Phys. Rev. 80, 911 (1960). 82. D. H. Parkinson, F. E. Simon, F. H. Spedding, Proc. Roy. Soc. A207, 137 (1951).