
MULTIPHOTON IONIZATION BY A
VERY SHORT PULSE

L. Keldysh

P. N. Lebedev Physics Institute, Moscow

Detachment of the bound electron by an electric field pulse of duration
only few or even part of the optical cycle long, however long compared to h̄/I
(h̄ - Planck constant, I - binding energy), is studied theoretically. This is the
model problem for ionisation of atoms by extremely short laser pulses. Be-
cause of strong nonlinearity it does not reduce to the sum of monochromatic
harmonics contributions and depend crucially on details of pulseshape. Gen-
eral analisis is presented in terms of analitical properties of the pulseshape
function and explicit formulae are given for typical pulseshapes such as soli-
tonlike, gaussian, lorenzian, etc., one- or half optical cycle long. Intensity and
pulselength dependency of the ionisation probability are of approximately
universal tunneling type at high intensities. However at moderate intensi-
ties in multiphoton regime they are very different for different pulseshapes,
always orders of magnitude exeeding ionization by monochromatic wave of
the same intensity and mean frequency.

A remarkable progress in generating very high intensity laser fields was
closely related to corresponding reduction of pulse duration [1,2]. Therefore
really multiphoton processes, i.e. that requiring simultanious participation
of many (� 1) photons, are observed typically in experiments with ultra-
short pulses (USP). With this reduction continuing, pulselengths become
comparable to the optical field cycle duration [3-8]. Under such conditions
the usual concept of transition (ionization) probability per time unit makes
no sense. The only meaningful quantity remains the total - after the whole
pulse - transition probability. Moreover the frequency spectrum of the pulses
under consideration is very broad and because of extreme nonlinearity of the
process its probability does not reduce to the sum of independent harmonics
contributions. The physical essence of ionization process in the high intensity
USP case may be thought of as interaction and competition of many har-
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monics contributions, depending not only on the spectrum, but also phase
relations of different harmonics, i.e. higher order field correlations. In other
words this means that the result is very sensitive to the exact pulse shape.
In this article some extreme particular cases are theoretically studied, corre-
sponding to USP’s few or even half optical cycle long.
Recently few groups have investigated both experimentally and theoretically
[] in a sense even more extreme limiting case - ionization of atoms by a pulse
much shorter as compared to characteristic electron times (inverse optical
transition frequency between neighbouring energy levels). They realized this
conditions experimentally [] with alkaly atoms, excited to very high Rydberg
states, corresponding to quasiclassical electron motion and small interlevel
distances. Field pulse acted in such a case as an (quasi)instantaneous kick,
moving electron from one - bounded - Kepler orbit to another - unbounded.
Unlike that the problem discussed below is essentially quantum one: ioniza-
tion from the tightly bound state, e.g. ground state, by the pulse one or
one-half optical cycle long, but much longer then ”atomic cycle” - h̄/I, h̄ be-
ing Planck constant and I - ionization energy. This means that the average
energy of photon in the pulse is small compared to ionization energy. For
atomic electron this is slowly varying perturbation, and therefore the same
adiabatic treatment can be applied to this problem, which was exploited ear-
lier [9] for ionization by intense monochromatic wave. That is based on the
observation that the final - free - state of electron in the process under consid-
eration is much more sensitive to such type of perturbations than the initial
one - strongly bound and localized. So the transition probabilty is calculated
as that of first order transition from the unperturbed initial atomic state to
the final ”exact” state of free electron in the strong time-dependent electric
field. The latter of these states accounts for the field action nonperturba-
tively and contains the main contribution to the transition amplitude. For
the fields below atomic, i.e. intensities up to PW/cm2 range the most (an
only) important defect of this approach is neglecting electron - ion Coulomb
interaction in the final state, i.e. Born-type approximation. The significance
of such type approximate solutions may seem questionable now. This kind
of quantum problems - single electron in an external field, including both
atomic and electromagnetic - certainly are within the limits of modern com-
puting abilities. During the last decade several algorithms were proposed
and successfully applied to the problems of multiphoton ionization and some
others, related, such as UV higher harmonics generation []. Still analitic so-
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lutions, even semiquantitatively correct, also have their advantages.¡¡ Being
not restricted by any definite set of parameter values¿¿ They may be useful
in representing an overall view of the process and trends due to variation of
parameters, or as a starting point in analizing more complicated, e.g. multi-
electron, systems.
Let the spatially uniform time dependent electric field F(t) be given by

F(t) = F · f ′(ωt) (1)

Here f ′(x) - derivative of the function f over its argument x, ω - inverse
characteristic timescale of the pulse. In such a field the wave function of the
free electron is

ψp(r, t) = exp
[ i
h̄

(
p(t)r −

∫ t

0

p2(t′)
2m

dt′
)]

(2)

with

p(t) = p +
eF
ω

· f(ωt) (3)

Following the usual first order perturbation theory, the transition probability
from initial state ψ0(r) exp[(i/h̄)It] to the final state ψp(r, t) can be calculated
as

wip =
e2F2

h̄2ω2

∣∣∣ ∫ ∞

−∞
dx ·R‖

(
p +

eF
ω

· f(x)
)
· exp

[
i
I

h̄ω
· Φ(x)

]∣∣∣2 (4)

with phase function Φ(x) defined as

Φ(x) =
1

I

∫ x

0

[
I +

p2(x′)
2m

]
dx′ − i

h̄ω

I
· ln f ′(x) (5)

Here
R‖(p) =

∫
exp [−(i/h̄)pr] · nr · ψ0(r)d

3r

- transition matrix element of coordinate component parallel to the field F ,
n - the unit vector in the field direction.
In order to make the following analisis more spectacular it is convenient to
use the representation of all quantities involved in the natural ”atomic” scale,
i.e. to define

Ω =
h̄ω

I
q =

p√
2mI

E =
eh̄F√
2mI3

(6)
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Certainly this means the corresponding transformation of coordinate and
time scales. Then dimensionless matrix element should be defined as

M(q) =

[√
2mI

h̄

]5/2

· R‖(p) (7)

According to the above claim the whole consideration in this article is for
Ω � 1
The crucial parameter of the theory is then the ratio of dimensionless field
and frequency :

λ =
|E|
Ω

(8)

which is exactly inverse to the parameter γ introduced in [9] (if ω considered
as a characteristic frequency of the process).
The factor 1/Ω being the large parameter of the theory, the integral in (4) can
be calculated by the stationary phase method.The stationary phase point(s)
in the complex variable x plane is to be found from equation

∂Φ(x,q)

∂x

∣∣∣∣∣
xs

= 1 +
(
q + n · λ · f(xs)

)2 − iΩ
f ′′(xs)

f ′(xs)
= 0 (9)

Then the transition probability

wip = 2πΩλ2

∣∣∣∣∣
∑
s

M
(
q + nλf(xs)

)
√
|Φ′′(xs,q)|

· exp[− i

Ω
· Φ(xs,q)]

∣∣∣∣∣
2

(10)

with summ over all saddlepoints xs. Contributions of different saddlepoints
are exponentially different and only that dominating must be kept in (10).
Generally there is one such dominating saddle point - that corresponding to
the lowest value of positive imaginary part of Φ(xs,q). However in many
cases, due to some symmetry of the pulse function f(x), there exist pairs
or groups of equivalent saddle points with equal values of �Φ(xs,q) but
different phase factors - �Φ(xs,q). Interference of their contribution results
in oscillations of the ionisation probability as a function of pulse parameters
λ and Ω.
Considered as a function of its argument q this probability is momentum
distribution function of emmited electrons. Note however that q in this
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formulae is momentum at the time instant when f(x) = 0. So if f(∞) �= 0,as
it is e.g. in examples 1 and 4 below, the momentum distribution of ejected
electrons is distribution (10) but shifted by δq = nλf(∞), as is done in
formulae (17) and (43) for above mentioned examples.
Typically distribution is gaussian around some average momentum qm , to
be defined from the condition of minimum of �Φ(xs,q), which accounting
for (9) reduces to

q‖m = − λ

x′′sm
· �
[ ∫ xsm

0
dx · f(x)

]
(11)

and q⊥ = 0, with q‖ and q⊥ - momentum components, parallel and perpen-
dicular to the field direction; xsm ≡ xs(qm); x′′s - imaginary part of xs.
In the vicinity of this sharp maximum, taking into account (9) and (11),
imaginary part of Φ(xs,q) can be transformed to

�Φ(xs,q) = x′′sm+

+�{
∫ xsm

0
[λ2f 2(x) − q2

‖m]dx+ xsmq
2
⊥ + [xsm − i(λf ′(xsm))−1](q‖ − q‖m)2}

(12)
with halfwidths defined by the second derivatives of the exponent in (10)
over components of momentum.
A comment should be done about the preexponential factor in (10). In deriv-

ing this formula the matrix element M
(
q+nλf(x)

)
was treated as a regular

function, slowly varying in the vicinity of xs: M(q) 
 M0 ≡M(0). However
typically M(q) contains a pole - singularity of the type M(q) = M0/(1 + q2)
- in the momentum complex plane [9]. In the whole range of nonlinear ab-
sorbtion λ� λc with λc defined below by (46), terms in Φ(xs) proportional
to λ or λ2 are much larger then the last term ∼ Ω. Then this pole gets very
close to the position of the saddle point. This modifies slightly evaluation
of the integral in (4): instead of saddle point contribution enters half of the
residue in that point, which enhances the preexponent in (10) by the factor
π/(4E|f ′(xs)|). If two (or few) equivalent saddle points (and poles of M)
are present in (10), each contribution to the transition amplitude must be

multiplied with sign�[f(xs)] ·
√
π/(4E|f ′(xs)|). However strictly speaking

this corrections to the preexponential factor (like also one discussed below
and due to violation of the standart stationary phase method in the vicinity
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of the singularity in the pulseshape function itself) must be neglected: the
preexponential factor in (10) and some following formulae should be consid-
ered only by the order of magnitude correct because of the abovementioned
Born-type approximation.
Results for a few particular but representative enough examples are shown
below.

1. Solitonlike half-cycle pulse (HCP)

f(x) = tanh x (13)

which means for electric field strength

E(t) = − E
(coshωt)2

(14)

Momentum-resolved ionization probability

wi(Ω, λ,q) =
πΩ√

Ω2 + λ2
· (λ2 + ζ2)|M0|2·

· exp

{
− 2

Ω

[
(1 + λ2) arctan

ζ

λ
− λζ + arctan

ζ

λ
· (q − nλ)2

]}
(15)

with parameter

ζ =
1

λ

[√
Ω2 + λ2 − Ω

]
(16)

Accounting for above mentioned pole in the transition matrix element this
formula shoud be modified to

wi(Ω, λ,q) = |πM0|2 · exp

[
− 1

Ω

(
(1 + λ2)π + 2 arctan

ζ

λ
· (q − nλ)2

)]
·

· sinh2

[
1

Ω

(
(1 + λ2) arctanλ+ λ

)]
(17)

Moreover formulae (15)and (17) are derived by the stationary phase method
applied to evaluate integral in (4). However, for f(x) = tanh x with field
decreasing the saddle point approaches iπ/2 - the singularity of f(x) itself
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(not that of matrix element). In the linear absorption regime λ < Ω � 1 this
violates conditions of the stationary phase method applicability also modify-
ing numerically preexponential factor. In the framework of general analisis
below the exact (in Born approximation) formulae will be derived valid for
a weak field limit also. Coincedeng with (15) and (17) in the nonlinear field
range, for weak fields they contain correction factors Sreg for (15) and Ssing

for (17) represented in formulae (52) and (54).

2. Solitonlike one-cycle pulse (OCP)

f(x) = − 3
√

3

4 cosh2 x
(18)

The numerical factor is introduced to normalize |f ′(xm)| to unity at both
extrema of the field strength.
Momentum-resolved ionization probability

wi(Ω, λ,q) = 8|2πM0|2 · exp [−π

Ω
(1 + q2)]·

·
[
1 − cos

( 2

Ω
�Φ(xs,q)

)]
· sinh2

[
− 1

Ω
· �Φ̃(xs,q)

]
(19)

with
�Φ̃(xs,q) ≡ �Φ(xs,q) − π

2
(1 + q2) = (1 + q2)(x′′s − π/2)

−1

6

[
(5q‖ − 2λ̃) · η +

√
1 + q2

⊥ · ξ
]

(20)

�Φ(xs,q) = (1 + q2)x′s −
1

6

[
(5q‖ − 2λ̃) · ξ −

√
1 + q2

⊥ · η
]

(21)

saddle point xs defined by

x′′s ≡ �xs =
π

2
− 1

2
arccos

√
1 + q2

⊥ + (λ̃− q‖)2 − λ̃√
1 + q2

(22)

x′s ≡ �xs =
1

2
tanh−1

[
ξ

λ̃+
√

1 + q2
⊥ + (λ̃− q‖)2

]
(23)
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field parameter λ̃ = (3
√

3/4) · λ and

ξ =

√
2λ̃
[√

1 + q2
⊥ + (λ̃− q‖)2 + λ̃− q‖

]
(24)

η =

√
2λ̃
[√

1 + q2
⊥ + (λ̃− q‖)2 − λ̃+ q‖

]
(25)

Formula (19) is presented in the form corresponding to the singular matrix
element M(q) as described above. The function sinh in (19) is accounting for
contributions of two pairs of poles (saddle points): one pair with x′′s < π/2
and another symmetrically above π/2. Contribution of the latter pair is
significant only at the weakest fields λ � Ω2. It makes formula (19) to
describe correctly (up to numerical factor ∼ 1) linear absorption. In the
whole nonlinear range λ � Ω2 this contribution is negligible and the sinh
does not differ from the half of the exponential function of the same argument.
The momentum q‖m,corresponding to distribution function maximum, should
be found from the equation

q‖m · x′′sm
∣∣∣∣∣
q⊥=0

= η (26)

and substituted into (19) - (25). For small λ � 1 it is approximately

q‖m ≈
√

2λ̃/π. For large fields λ � 1 its value approaches 2λ̃/3. Numerical

data for (3q‖m)/(2λ̃) are plotted in the Fig.1.
Oscillations in field and momentum dependences in (19) arise because of con-
tributions interference due to pair of saddle points, symmetrical relative to
imaginary axis. In the total - momentum integrated - ionization probabil-
ity their amplitude decreases with field increasing as a result of distructive
interference of different momenta contributions.

Wi(Ω, λ) =

√
2πΩ

u
· Ω

x′′sm
· |M0|2 · exp

[
− π

Ω
(1 + q2

m)
]
·

·
[
1 − exp

(
− 2λ̃

πΩ

)
· cos

(4
√

2λ̃

3Ω

)]
· sinh2

[
− 1

Ω
· �Φ̃(xsm,qm)

]
(27)

with

u =

[
x′′s +

1

4

qξ + η

(1 + q2)
√

1 + (λ̃− q)2

]
q=qm
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The oscillating term is written here in the form valid only for λ � 1 as for
larger fields this term becomes negligible.

3. Gaussian one-cycle pulse (OCP)

f(x) = exp [
1 − x2

2
] (28)

Corresponding field pulse shape

E(t) = −Ex · exp [
1 − x2

2
] (29)

Then

Φ(xs,q) = (1 + q2) · xs + 2λ̃q‖Erf(xs/
√

2) + λ̃2 · Erf(xs) (30)

Here λ̃ ≡ √
e · λ; Erf(x) -is error integral

Erf(x) =
∫ x

0
exp (−x2) · dx

and

xs(q) =

√√√√ln
λ̃2

1 + q2
∓ 2i · arccos

−q‖
1 + q2

(31)

Only saddlepoints in the upper halfplane of x are relevant. So signs of roots
must be chosen with positive imaginary parts. Therefore signs of real part
are different for two saddlepoins. This is just an example of two equivalent
saddlepoints interference.

x′′s ≡ �xs =
1√
2

√√√√√
√√√√(ln

λ̃2

1 + q2
)2 + 4(arccos

−q‖√
1 + q2

)2 − ln
λ̃2

1 + q2
(32)

and

x′s ≡ �xs = ∓ 1√
2

√√√√√
√√√√(ln

λ̃2

1 + q2
)2 + 4(arccos

−q‖√
1 + q2

)2 + ln
λ̃2

1 + q2
(33)
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The equation for qm in this case looks like

qm ·
∫ x′′

sm

0

[
1 − e−x′′

smu+u2/2 · cos (x′smu)

]
du

= −
∫ x′′

sm

0
e−x′′

smu+u2/2 · sin (x′smu)du (34)

As xsm itself is the function of qm, this equation together with (31) are the
system of two coupled equations defining both xsm and qm.

Imaginary parts of Erf functions in (30) also can be represented by in-
tegrals similar to those in (34). Taking into account (31)

λ̃2�Erf(xs) = −
∫ x′′

s

0
e−2x′′

smu+u2 ·
[
(1 − q2

‖m) · cos (2x′smu) + 2q‖m · sin (2|x|′smu)
]
du

(35)
Unlike general form of (31) - (33), equations (34) and (35) are written for
q = qm.
All this formulae become essentialy simplified and more transparent in the
”multiphoton” (λ � 1) and ”tunneling” (λ � 1) parameter ranges. For
moderate intensities (λ� 1) momentum-resolved ionization probability

wiq ≈ 4πΩ
λ2

λ2 + λ2
c

x′′sm|M(0)|2·

[
1 + cos

π − 4q‖
x′′smΩ

]
· exp

[
− 2

Ω
·
(

(1 + q2)x′′sm − 1/(2x′′sm)

)]
(36)

with x′′sm given by

x′′sm =

√√√√ln
1

λ̃2 + λ2
c

� 1 (37)

and
q‖m ≈ − π

2x′′2sm(x′′2sm − 1)
� 1 (38)

Strictly speaking formula (36) is correct for low fields (λ� λc ≡ exp (−1/(2Ω2),
linear absorption) and moderate fields (λc � λ � 1). In the intermediate
range (λ ∼ λc) it seems to be a reasonable interpolation. Oscillations of
transition probability to any particular momentum due to interference of
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two saddlepoints contributions are very strong - up to complete cancellation.
However in the total (momentum integrated) ionization probability they are
gradually damped with the field increasing because of the momentum depen-
dence of their phases.

Wi = 8
λ2x′′2sm

λ2 + λ2
c

( πΩ

2x′′sm

)5/2|M(0)|2·

·
[
1 + e−2/(Ωx′′3

sm) · cos
π

x′′smΩ

]
· exp

[
− 2

Ω
·
(
x′′sm − 1/(2x′′sm)

)]
(39)

As to the strong field tunneling regime (λ � 1), formulae (48) - (50) are
universal for any pulse shape the only difference being in the particular value
of the parameter a - curvature at the pulse top. For gaussian pulse a = 2.

4. Lorenzian half-cycle pulse (HCP)

f(x) = arctanx (40)

Corresponding field pulse shape

E(t) =
E

1 + x2
(41)

Then the saddle point is

xs = i tanh [(
√

1 + q2
⊥ + iq‖)/λ] (42)

and momentum distribution of ionization probability

wi(Ω, λ,q) = |πM0|2 · exp

[
− 2

Ω

(
|xsm| − λ2 · ϕ(|xsm|)

)]
·

· exp

[
− 2

Ω

(
q2
⊥ · |xsm| + (q‖ − πλ/2)2 ·

(
|xsm| + 2

λ
(1 − |xsm|2)

))]
(43)

with

|xsm| = tanh
1

λ
(44)

and

ϕ(x) =
1

4

∫ x

0
ln2 1 + x

1 − x
· dx (45)
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The numerical solution of (9) and (11) is strightforward for any reasonable
pulseshape. However the general qualitative analisis is also possible and may
be illuminating. There exist three essentially different areas in the plane of
parameters (Ω, λ):
1. Weak fields and linear absorbtion for λ � λc(Ω) with λc - effective
nonlinearity threshold, essentially dependent on the pulseshape and to be
specified below for some typical pulseshapes. The general definition is

λc · |f(xs0)| = 1 (46)

with xs0 being the root of equation (9) corresponding to λ = 0. Terms pro-
portional to λ and λ2 in the righthandside of (9) can be neglected. The
exponential factor in (10) reduces to exponentially small amplitude of high
frequency harmonics, corresponding to the abovethreshold quantum energy
h̄ω > I, always present in the Fourier spectrum of broadband signal.

2. Nonlinear regime: λ > λc. The last term in (9) can be ommited.
Then

xs = f−1
(−q‖ ± i

√
1 + q2

⊥
λ

)
(47)

Here f−1(y) - function, inverse to f(x). The sign of the imaginary part of its
argument must be fixed as to correspond to x′′ > 0
2a. High fields - Ω−1 � λ� 1 .
Without any loss of generality one can always choose the point x = 0 to be
the absolute maximum of f ′(x), i.e. field strengh, and f ′(0) = 1. This last
condition just fixes the exact value of λ. If there are few equivalent maxima
each of them can be treated separately. In the range of interest around this
point f(x) can be approximated by cubic parabola

f(x) ≈ f0 + x− 1

6
ax3 (48)

0 < a ∼ 1. Then after simple calculations

�Φ(xs,q) =
2

3λ
·
[
1 + 4a

(q − qm)2

λ2

]
(49)
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and
q‖m ≈ λ · [f(∞) − f0] (50)

This corresponds [9] to quasistatic tunneling during a short δx ∼
√
|E| time

interval around field maximum. Momentum distribution of photoelectrons is

gaussian with halfwidth Δq‖ = λ
4

√
3|E|/a.

2b. 1 � λ � λc(Ω) - moderate fields . Compared to the weak and
strong field cases in this one the λ -dependence of �Φ(xs,q) is more diverse
depending on details of pulseshape, particularely singularities of the function
f(x) in the upper halfplane of the complex variable x. The gaussian shape
f(x) ∼ exp (−x2/2) is the particular case with the only singularity of f(x)
being the essential one at the ∞. However most typically pulselike function
f(x) has singularities (poles, branching points) in the complex plane of vari-
able x at some xpol with the imaginary part x′′pol ∼ 1. Then for weak fields
just the exp (−2x′′pol/Ω) defines the amplitude of high frequency Fourier com-
ponent responsible for single quantum ionization. With the field increasing
the saddle point xs moves from xpol to the real axis. Let the closest to the
real axis singularity be the k-th order pole, i.e.

f(x) ≈ A

(x− xpol)k

for |x − xpol| � 1. Then as will be shown below, the ionization amplitude
in the whole domain λ� 1, including both weak and moderate field ranges,
beside the weak field factor exp (−2x′′pol/Ω) is dependent only on a single
parameter

z =
(λA)1/k

Ω
(51)

and the moderate field range starts at |z| ∼ 1 i.e. λc ∼ Ωk. Note that the first
two of above described examples are dominated by such type singularities:
the first one corresponding to k = 1 and the second - to k = 2. The saddle
points (and coincedent with them possible poles of matrix element M

(
q +

nλf(x)
)

in preexponential factor) are

xs(q) = xpol +
[ Aλ

1 + q2
(±i

√
1 + q2

⊥ − q‖)
]1/k

(52)
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with both signs in the argument relevant, as all of these 2k points are in
the close vicinity of xpol which itself is in the upper halfplane. However in
the moderate field strength range |z| > 1 only one of them is dominating -
that with minimal value of x′′s . Or one pair of such points, if, depending on
pole order k and χ ≡ argA, there exist in the whole set (52) such a pair
of mirror symmetric relative to the imaginary axis elements, with minimal
value of imaginary part. The second example above with k = 2 and χ = 0

corresponds just to such a case (xs −xpol)q=0 =
√
λ/2 · (±1− i). In a general

case

�Φ(xs,q) = x′′pol−
2k

2k − 1
γ ·(λ|A|)1/k +q2

⊥/(Δq⊥)2+(q‖−q‖m)2/(Δq‖)2 (53)

with

Δq2
‖ ≈ Δq2

⊥ ≈ x′′pol + o(λ1/k)

q‖m =

√
1 − γ2

(2k − 1)x′′pol

· (λ|A|)1/k

and

γ = maxs
(xpol − xs)

′′

|xs − xpol| (54)

with index s = 1, 2...2k marking different elements of the set (52). Thus in the
moderate field strength range ionization probability increases as exp [4kγ|z|/(2k − 1)]
and the average momentum as λ1/k. If there is only one dominating saddle
point

Wi(Ω, λ) =
√
π
( Ω

2x′′pol

)3/2 · |M0|2 · exp
[
− 2

Ω
· x′′pol +

4k

2k − 1
γ|z|

]
(55)

and

Wi(Ω, λ) =

√
π

2

( Ω

x′′pol

)3/2 · |M0|2 · exp
[
− 2

Ω
· x′′pol +

4k

2k − 1
γ|z|

]
·

·
[
1 − exp

[
− 2

x′′polΩ
·
( γ|z|
2k − 1

)2] · cos
( 4k

2k − 1

√
1 − γ2 · |z|

)]
(56)

if a pair of symmetric saddle points contribute. It should be noted that in
all arguments of exponential and trigonometric functions only leading terms
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in λ� 1 are shown in these formulae.
Derived by stationary phase assimptotic evaluation of integral in (4) formu-
lae (55) and (56) are valid for moderate fields range Ωk � λ � 1. Their
inapplicability for weak fields is clearly seen from the fact that they do not
follow usual ∼ E2 dependence as λ → 0. The reason for that was already
mentioned above in discussing the second example: at z < 1 contributions of
all 2k saddle points, surrounding xpol, become of the same order. It is easy
to account for all of them, which would restore the correct ∼ E2 behaviour in
weak fields. Still it is not the whole story. The numerical coefficient appears
to be wrong. The reason is that beside all these poles and saddle points
the point xpol itself is the essentiall singularity of integrand in (4) of the type
exp [i(λA)2(x− xpol)

−2k+1/(2k − 1)]. Evaluation of integral in (4) accounting
for the whole this structure in the complex plane, valid in the whole domain
|z| � 1 i. e. weak and moderate field ranges, is possible in terms of fast
converging power series in z. The result again is slightly different depending
on the presense or absense of the pole in matrix element. If matrix element
is regular (no pole) and slowly varying M(q) ≈M0

wi(Ω, λ,q) = λ2|M0|2 · exp [−2x′′pol

Ω
(1 + q2)] ·

∣∣∣Sreg
k (zk/

√
2k − 1)

∣∣∣2 (57)

with

Sreg
k (y) = 2π

√
2k − 1 · y

∞∑
n=0

(−1)(k+1)ny2n

n! · [(2k − 1) + k]!
(58)

and for the case of singular matrix element

wi(Ω, λ,q) = λ2|M0|2 · exp [−2x′′pol

Ω
(1 + q2)] · |Ssing

k (zk)|2 (59)

with

Ssing
k (y) = 2πk · y

∞∑
n=0

(−1)(k+1)n · an · y2n (60)

and coefficients an defined as

an =
n∑

m=0

(2k − 1)−m

m! · [(2n+ 1)k −m)]!
(61)

Assimptotics of functions Sreg
k and Ssing

k at |z| � 1 coincede exactly with
results of stationary phase calculations in the moderate field regime

Sreg
k (zk/

√
2k − 1) ≈

√
πk/|z| · exp

( 2k

2k − 1
γ|z|

)
(62)
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Ssing
k (zk) ≈ π exp

( 2k

2k − 1
γ|z|

)
(63)

and their first terms substituted in formula (51) and (53) give exact result for
weak field regime. Thus for pulseshape with pole type of singularity formulae
(9)-(12) and (57)-(61) together describe completely ionization probability for
any field strength, restricted only from above by atomic field, i.e. E � 1.
However weak field regime seems to be of more academic interest: for such
short pulses effect is hardly experimentally observable.

The last of above examples corresponds to another type of pulseshape
function singularity - logarithmic branching pount (”zeroth order pole”).

For long pulses and approximately monochromatic fields the frequency
dependence of true multiphoton process probability is very steep. As the
whole consideration above shows, for very short pulses - HCP, OCP and,
probably, few (< 1/Ω) cycles long pulses - it is much slower, though still
pretty steep. Qualitatively this slowing down can be explained as an in-
crease, with the field increasing, of an average effective number n of photons
absorbed per single ionization event. Because of a broad frequency spectrum
of the pulse the process is single-photon one at a weak field and its multi-
plicity increases gradually to n ∼ λ3 [9] in tunneling regime λ� 1, while in
monochromatic field it is restricted from below - n > I/(h̄ω).

This work was started during my visit to the Miller Institute for Basic
Research of the University of California, Berkeley. I am grateful to the
Miller Institute for this opportunity and especially to Professor Ron Shen for
hospitality and many valuable discussions. Also I am thankful to Professor
J. Moloney for discussion having stimulated the beginning of this study.
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