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I n the classical statistical mechanics the quasi-ergodic hypothesis enables one only to calculate 
the time averages for an isolated system. I t is insufficient for determining the change in the state 
of a system during small time intervals and it does not lead, for instance, to the thermal conducti­
vity • '-'nation To obtain the laws of the variation with time the assumption of equal probabilities 
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i a . A. A minimum at the time tx is thus obtained for i be entropy instead of a monotonic increa- 
' 1 j  ‘‘onnected with the general contradiction between reversibility of classical mechanics
1 1 1 A ‘i raody Mamie irreversibility.
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It is a widespread opinion that the complete 
statistical foundation of thermodynamics can 
be obtained already on the basis of the laws 
of classical mechanics. Even if there are some 
vagueness and some logical gaps in the existing 
proofs, it is believed tha t these gaps are of no 
importance and in some way or other they can 
be elim inated. This opinion is supported by 
a great many experim ental facts confirming 
the laws of sta tistica l mechanics.

In accordance w ith this standpoint, it is
* Presented to the Session of the Physical Mathe­
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quite natural to search for the foundation 
of quantum statistical mechanics along the 
same lines as for the classical one. It was re­
peatedly stated th a t quantum  mechanics con­
tributes nothing of essential import to this 
problem.

As wre shall see7 such an opinion cannot be 
justified theoretically. As a m atter of fact, 
classical mechanics, owing to  its perfect re ­
versib ility , does not enable one to obtain 
sta tistica l irreversibility. Only in quantum  
mechanics there arise elements of irreversi­
b ility , the second law of thermodynamics 
being their macroscopic reflection.
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1. Classical statistical mechanics

It is well known th a t all the attem pts of 
the sta tistica l foundation of thermodynamics 
based on classical mechanics have encountered 
serious difficulties (x). The concept of proba­
b ility  itself is foreign to  rational classical 
mechanics. Some postulates or hypotheses are, 
therefore, inevitable for its introduction. The 
fundam ental Boltzmann Я -theorem deals 
w ith a perfect gas whose molecules obey the 
laws of classical mechanics. The in itia l po­
sitions of gas molecules in the phase space are 
the only things at our disposal for the enun­
ciation of a probability  hypothesis. In order 
to prove the Я -theorem the following assump­
tion is necessary: at a certain instant t 1 the 
position of any molecule, i. e. its phase, is to 
be independent of the positions of all the other 
molecules. Then during a small interval of 
tim e to  t1-\-M there is realized, in the first 
approxim ation, the collision law leading to  
Boltzm ann’s kinetic equation and further 
to  the Я -theorem. According to  the la tte r the 
entropy m ust increase during this tim e in ter­
v a l, provided the d istribution function differs 
from the equilibrium  one.

Classical mechanics is, however, quite rever­
sible. Our probability assumption, i. e. the 
in itia l condition for the instant t v continues 
to hold if the velocities of all the molecules 
are replaced by their opposites without any 
alteration in the relative positions of the mole­
cules. Therefore, such a replacement being 
performed, the result cannot be changed. The 
Я -theorem requires accordingly at once that 
the entropy should decrease during the time 
interval t 1— At to  t lt This does not, of course, 
contradict its increase after t1; one being an 
inevitable consequence of the other. If the 
assumption of the independence of the positions 
of gas molecules in the phase space were per­
manent in the course of tim e, we should be 
able to repeat the same argument for the instant 

=  ij-j-Дг. Instead of the entropy increase 
during the interval t1 to ts we should obtain 
its decrease. This shows tha t such an assump­
tion cannot be m aintained in tim e. Our con­
sideration is an argument of contraries and it 
can easily be illustrated by simple examples. 
If at the instant tt the phases of all the molecu­
les are independent, then after some time 
macroscopically distinguishable molecule 
groups w ill arise, their phases being not inde­
pendent. Hence, the assumption of the inde­

pendence of the phases of gas molecules can 
be made for one instant t t only. Then at other 
instants of tim e it w ill, in general, be not 
satisfied.

The variation of entropy obtained above 
does not correspond at a ll to th a t prescribed 
by therm odynam ics. Owing to  the perfect 
reversibility of classical mechanics a minimum 
quite sym m etrical w ith  respect to  the time 
is obtained at the point t1. Such a variation 
has nothing to  do w ith the monotonic increase 
required by thermodynamics. In fact, we have 
obtained the reversible course of a thermal 
fluctuation about the most probable value 
of entropy £ max= const, while thermodynamic; 
deals w ith the irreversible varia tion  of the 
most probable value, w ith neglect of sponta­
neous fluctuations. Let us suppose tha t at the 
instant t1 some tem perature difference i? 
detected. Then this tem perature difference 
must decrease in the past as well as in the 
future. Just this behaviour corresponds to the 
second law of therm odynam ics. To our result, 
however, there corresponds the decrease o! 
the tem perature difference in the future and 
its increase in the past.

All instants of tim e are quite equivalent 
in classical mechanics. Hence, only such as­
sumptions can have a physical meaning which 
can be satisfied at every instant of tim e. The 
assumption of the independence of the phase? 
of gas molecules does not meet this require­
m ent. Therefore, no real significance can be 
attributed to it.

The criticism directed against the Я -theo­
rem caused Boltzmann and Maxwell to pas; 
on from the six-dimensional phase space fo: 
one molecule only to  the many-dimensiona: 
phase space for the whole molecular systen. 
considered. In order to give the laws of sta­
tistical physics the character of a purely mecha­
nical necessity, they put forward the ergodn 
hypothesis. The latter is no longer a conditiov. 
concerning the distribution of in itia l values. 
It is an assumption referring to  the structui'- 
of an isolated molecular system by itself. 
i. e. to  the properties of the interaction forces.

In its in itia l form the ergodic hypothesis 
proved to be logically inconsistent. The con­
sequent form of this hypothesis can be obtain­
ed as follows. According to E l i r e n f e s t f 1 
the "coarse-grained density”  in the pha;-- 
space is to  be introduced. It means th a t a.U 
the phase space must be divided up into sui-| 
ficiently small but still finite cells. Instead;
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of a continuous probability  distribution in 
the phase space we must consider the proba­
bilities of our molecular system being in 
these phase cells. A layer in the phase space, 
for which the to ta l energy of the system falls 
w ithin given and also sufficiently narrow li ­
m its, is to be considered. Then the quasi- 
ergodic hypothesis states th a t the relative 
tim e of the system being in any specified phase 
cell of such a layer approaches the lim it pro­
portional to the cell extension, irrespective 
of the in itia l conditions, provided the time 
in terval taken into account increases indefi­
n ite ly . •

The entropy of the system satisfying this 
quasi-ergodic hypothesis for the most part 
of any sufficiently long time in terval must 
be near its greatest (microcanonical) value, 
under given external conditions and a given 
value of the to ta l energy. It can deviate from 
this greatest value only as a result of fluc­
tuations. In general, the macroscopically obser­
vable quantities for the system for the most 
part of time must lie near their equilibrium  
values, calculated by the averaging over the 
whole constant energy layer. In other words 
the quasi-ergodic hypothesis leads to  the iden­
tification of the tim e averages w ith the phase 
averages. Then it is possible to  speak about 
sta tistica l equilibrium , tem perature, etc.

This is, however, insufficient if, instead 
of averaging over long periods of tim e, we con­
sider the behaviour of a molecular system in 
the course of tim e. Let at some instant tx 
the values of macroscopically observable 
quantities for our system be very different from 
the equilibrium  ones. The irreversible macro­
scopic equations as, for instance, the therm al 
conductivity equation must follow from the 
sta tistical laws. Definite changes of the values 
of observable quantities in the course of time 
are prescribed by these equations beginning 
w ith sufficiently small tim e intervals. The 
latter are not to be regarded as infinitesim al 
like the phase cell extension in the definition 
of coarse-grained phase density. But they must 
certainly be considerably less than the re la­
xation tim e, i. e. the time necessary, on the 
average, to approach the state of therm al 
equilibrium .

In order to obtain the sta tistica l laws for 
the variations of the state of a system during 
such small time intervals, we cannot use the 
averaging w ith respect to  the tim e. A further 
hypothesis of the nature of the in itia l condi­

tion is here necessary. It can be enunciated as 
follows. At a given instant of time the system 
considered w ith equal probabilities may be 
in all the points of its quasi-ergodic trajectory 
compatible with the values of macroscopic 
quantities observed at this instant. In other 
words, the probability of the system being 
in any specified phase cell compatible with 
the observed values of macroscopic variables, 
is proportional to  the cell extension.

Such an assumption of “ equal probabilities 
of all permissible phase points’' is absolutely 
necessary to  obtain the s ta tis tica l laws of the 
variations of macroscopic quantities in the 
course of tim e. If the value of the entropy of 
a molecular system is abnorm ally low at a 
given time instan t then at the next one it 
may be higher or lower. Equal probabilities 
of all permissible phases make it only possible 
to  consider the increase of entropy as its pro­
bable variation . The assumption of the inde­
pendence of the phases of gas molecules on 
which the proof of the H-  theorem is based 
is a special form of the assumption of equal 
probabilities of all permissible phases. The 
assumption of equal probabilities of all 
points of a certain small extension in the m any­
dimensional phase space is another form of it.

The principal difficulty of classical s ta ti­
stical mechanics met w ith in the discussion 
of the Я -theorem is here encountered in a more 
general form, If we assume, as has just been 
said, th a t at a certain instant t t all permissible 
points of the phase trajectory are equally 
probable then in the future, at the
entropy is almost certain to  increase. This 
result is proved though for a perfect gas only; 
but one can believe the behaviour of more 
complicated molecular systems to  be sim ilar, 
under sufficiently general assumptions. Our 
in itia l condition for the instant t t is but 
not altered by the replacement of all the 
molecular velocities by their opposites. Hence 
in the past at t <  t1 the entropy should decrease 
owing to the reversibility  of classical mecha­
nics, i . e .  there is almost certain to  be a m i­
nimum at the point t t . Further, if all permis­
sible phase points were assumed to be equally 
probable at the instant ti — t i -\-At then the 
entropy, instead of increasing, should decrease 
during the interval from t1 to t2. Hence, this as­
sumption cannot be satisfied at the instant t2, 
being accepted for the instan t tl .

All the contradictions which we have obtain­
ed w ith respect to  the Я -theorem result thus
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liLyi1 word, for word. The assumption of equal 
payabilit ies  of all permissible phases also 

sot be preserved in the course of time. 
И it is satisfied at the instant t L then it must 
be violated under the influence of the laws

i Lassical mechanics at other instants of time 
\\s>- h, as a matter of fact, differ by nothing. 
Mo. cover, the irreversibility does not at all 
jI's'W from this assumption. It gives a rnini- 

л on the reversible fluctuation curve only, 
il i- impossible to assume all permissible pha­
ses as equally probable for all times; such an 
assumption contradicts the laws of classical 
mechanics.

The question is thus not at all whether some 
additional assumptions are necessary for the 
c le r ic a l  foundation of thermodynamics. As 
a m atter of fact, there exist no assumptions 
whi ii could remove the obvious contradiction 
1 1 ween reversibility of classical mechanics 
•u:-: irreversibility of thermodynamics.

3* Irreversib ility  of quantum  mechanics

T- e concept of probability is intim ately
■« ч-ted w i t h  the  fu n d a m e n ta l  not ions • '

; ’ lu m  n j ^ i i a n i  з. Tne ie fo re ,  i t  is n a t u r a l  
w ’tn j* a:M*’iVal there arises a hc;>n to i  v'i 

‘ i v ir o b a b iH v  ’ч п  in ;1; •
.л Lvmd V-ion ч ч ; mod vn ami. s. Ь;<1ч ,ч , 
•,V v, ;'4*is ] \ J ip’ e ' ‘J4 .4 
; \ч*' '' ! I ' ! (i rue 4;i] • i

Чч jl п ч  •' m ; *s <ч- ч  lair-  v! . v  *•»
- :'iC v/.lb* ч а» у чк1/: '.jn* 1 a ^ rm - -  

- • < i' чч : . ; i :ч > -  4 ’ * » >ч <. *' < ;4 
U'n.s ha\o p:'<\cd to ч. , лчо5'-*Ь:8’\ 

-/:v'!\vn by S с h г о d i n g e г (ч) and
ч a I i (3) the probability assumptions are 
*ч. :^sary here as before. They appear in the 
)‘o. m of the assumption of equal probabilities 
ni d'ffeienl eigenfunctions and of indepen­
dence of their phases.

Tne question, we are particularly interested 
in, is the question of irreversibility. Quantum 
mechanics is no longer entirely reversible, na­
mely, the measurement process in it is irre­
versible.

The principal problem of quantum  mecha­
nics is to calculate the probability of any pos­
sible result of measurement at some time in ­
stant t2, provided the results of the preceding 
measurement at the instant are known. 
For this purpose the wave function ф (£x) for 
the instant t x or, more exactly, for the instant

!̂ +  0 immediately following the instant t 1
is to be determined, at first, according to the 
result of the measurement referring to the 
instant t j , the measurement being treated 
as instantaneous. Schro dinger’s equation must 
then be solved with this <b(£2) as initial con­
dition. The wave function <b(Z2—0) will thus 
be found for the instant of time directly pre­
ceding the second measurement. The transi­
tion from Vi(A +  0) to <j(t2 — 0) is reversible. 
H the wave function =ф*(г2—0) has been 
given for the instant t x +  0 we should 
obtain 0 — 6* ( tx -j- 0) for the instant t 2— 0. 
The replacement of the wave function by 
its conjugate complex corresponds here to 
the replacement of all momenta by their 
opposites.

Further our wave function must be expand­
ed in a series in terms of eigenfunctions ®k 
of the operator corresponding to the physi­
cal quantity observed at the instant l 2:

- M * - 0) =  2  (1 )
к

The desired probability of any specified v a ­
lue of к will then be

A, =  | ^ f  • (2)

Iii C'i ‘ r of m e a s u r e m e n t  i ' ч  fmie;  »ons
о ;,r * i. :чга1 *'Ьачечч1 ini*' у -ею omer 

1 : ;• . Л0 ' i*anc'i' '«>11 4 4  iLUV-

irrtv* i '  \  . ii \\ do not Know wbat In ‘ re- 
s ill I oi Ih  ̂ :* eeond measurement is, i .  r\ if* 
we do ii ‘ l.ta w vyjuL a function n'k Iia~ been 
resulted in, then we can still speak about 
the irreversible transformation of the pure 
state (1) w ith  the density m atrix

=  £*?*' (3 )

into the mixed state

Pkk' {h  + 0 )  — I %k |2 k̂k'*

The first density m atrix being written down 
in the ^-representation while the second one 
in the ^/-representation.

Let us now consider the inverse problem. 
Suppose we are given the result of the measu­
rement at the instant t2. Are we then in a po­
sition to find the probability of any possible, 
now unknown, result of the measurement 
at the former instant
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We can, certainly, apply the same scheme 
of calculations in the inverse direction; it 
does not lead, however, to the righ t result. 
Indeed, if the result of the measurement at 
the instant is known then we must take the 
corresponding eigenfunction as the in itial 
or, rather, as the •‘fina l” condition for solving 
Schrodinger’s equation in the direction of the 
past. If we have the results of statistical obser­
vations for the instant t2, the density m atrix  
pkk' for the mixed sta te , according to (4) must 
be taken as a final condition, being supposed 
in the form (4) in the ^-rep resen ta tion . But 
-we thus get by no means the pure state <1> (fj) 
corresponding to  the values of physical quan­
tities actually observed at the instant t x. 
In order to  obtain the wave function 0 (£,) 
we should proceed not from the state (4) 
but from the pure state (3).

To know the state (3) we must know the phase 
differences between different in the expan­
sion (1), i. e. we m ust also know the non­
diagonal elements of the density m atrix  (3). 
Such an information cannot be obtained from 
the measurements of the quantities к at the 
instant t2. On the basis of these measurements 
we can proceed as from a “ fina l” condition 
from the mixed state (4) only. Solving the equa­
tion of motion for the density m atrix  in the 
direction of the past, we obtain a mixed state 
for the instant tj-j- 0 as well. It w ill give the 
predictions for the measurement at the instant 
tr which w ill be in contr adiction -with the true 
result. We shall discover a discrepancy between 
our predictions and experiment after this 
result has been ascertained. Hence, the appli­
cation of the scheme of calculations of quantum  
mechanics in the inverse direction is illeg iti­
m ate. It leads to  a disagreement w ith the 
experiment.

On the other hand, classical mechanics is 
quite reversible and it can be applied to search­
ing for the behaviour of the system consi­
dered in the past as well as in the future with 
equal success. Classical mechanics, of course, 
is an approxim ate, lim iting form of quantum  
mechanics. There arises the question how it 
is possible to  apply classical mechanics in 
the direction of the past while this is impossible 
for the quantum  theory, the latter being the 
exact form of mechanics.

Classical mechanics neglects in principle the 
disturbance of the state of the system observ­
ed, accompanying the process of measure­
m ent. Under this condition only we can speak

of the continuous trajectory. This means, 
we must neglect the difference between the 
states (3) and (4) in the classical approxima­
tion. But the state (3) is just the “ final”  state 
leading to the righ t predictions for the past, 
the state (4) being known from the measure­
ments of the latter instant t2. Hence the pre­
dictions of the past are only in so far possible 
as it is permissible to neglect the irreversible 
quantum  disturbance of the system during 
the process of measurement.

The predictions of the past are, therefore, 
always quite determinate, for the future quan ­
tum , i. e. statistical predictions being also 
possible. This fully agrees w ith our psychology, 
It is customary to speak about th e  probabi­
lities of future events, but we never speak like 
th a t about the past. The past m ay be known 
or not, but it is always considered as being 
quite definite.

3. The kinetic equation and the //-theorem

It is natural to connect the irreversibility 
of thermodynamics with tha t of quantum  
mechanics. We shall proceed from P au li’s 
generalized form of the //-theorem  (3).

A macroscopic molecular system , i. e. the 
system with a sufficiently dense spectrum, is 
to  be considered. Some approxim ately sta tio ­
nary states 9*0, of this system must be taken 
as a set of orthogonal functions. Certain values 
of the energy can be ascribed to these states, 
they w ill be diagonal elements of the complete 
energy m atrix  in the corresponding represen­
tation . The non-diagonal elements cause then 
transitions between our approxim ately s ta tio ­
nary states. We assume that these transitions 
can be treated using perturbation theory. This 
implies certain restrictions on the choice of 
the orthogonal functions.

Let us select from our approxim ately s ta ­
tionary states those for which the energy falls 
w ithin given sufficiently narrow lim its. It 
is our layer of constant energy, in its turn 
being divided up into groups of states each 
of which corresponds to  a phase cell of classi­
cal sta tistica l mechanics. Let к, I, ... be the 
suffices of these cells, a, |3, ... being suffices 
of states in any cell. The number of states in 
any cell w ill be gk) being different for diffe­
ren t cells. For the macroscopic measurements 
some cells are always considerably larger than  
others. In any case there m ust be gk > 1  for 
all k.
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Suppose the result of a macroscopic measu­
rement at some instant t x is known. It does 
not mean th a t the state  of our system at this 
instan t is known exactly , i. e. its wave func­
tion can be found definitely. The macroscopic 
measurements are never complete, never give 
the values of all the variables whose sim ulta­
neous measurement is possible in principle. 
As a m atter of fact, a small part of them is 
determined by the measurements. We suppose 
th a t the suffix of the cell к only is determined, 
the state w ithin the cell remaining uncertain. 
There is no reason to assume the system to be 
after the measurement in a pure sta te , perm it­
ting the description by a wave function. The 
system w ill, in general, be in a mixed state . 
To describe such a state the density m atrix  
(v. Neum ann's sta tistica l operator) must be 
used. All the calculations become then quite 
cumbersome. There is the second approxima­
tion with the density m atrix  which corresponds 
to  the first approximation of the usual method 
of variation of parameters. We shall, therefore, 
suppose for the sake of convenience th a t the 
density m atrix  is transformed to its principal 
axes. The state of our system w ill be describ­
ed as a superposition of non-coherent wave 
functions corresponding to these principal 
axes (eigenfunctions of the statistical operator).

Let us consider one of these functions. We 
can expand it in a series in terms of the appro­
xim ately stationary functions ok(X. Let

*5)

Here Ekai are the diagonal elements of the 
energy m atrix , Eui being the non-diagonal 
elements; the dependence of the la tte r  on a 
and (3 is neglected.

The form of our functions (^  +  0) can­
not be ascertained by the macroscopic m ea­
surements referring to the instan t t l9 The 
value of к only is definite, being the same 
for any of these functions. The coefficients 
%ka remain indefinite, having only to satisfy 
the condition:

У  Ah-. 1 a t t =  t x. ( 7)

Some assum ption concerning the d is tr ib u ­
tion of the values (t^) is further necessa­
ry. According to P a u l i  (3) we m ust assu­
me that all are equal writh  respect to the ir 
moduli their phases being independent;

IkaVkr^ 8k (8)

The bar denotes here the averaging over 
a ll the non-coherent wave functions. We 
thus suppose sta tistica l equilibrium  w ithin 
the given phase cell. Owing to equation (6 ) 
th is assum ption is to be satisfied through­
out all the tim e for every к being accepted 
for one instan t only.

According to (5) only for l =  k are d if­
ferent from zero at the instant t lm This 
condition being preserved on the right-hand 
side of equation (6), in the f irs t approxi­
m ation  we get:

The value of к corresponds here to the re­
sult of observation.

In classical mechanics we m ight assume 
th a t the observation is continuous, but in 
quantum  mechanic# measurements always 
are discrete. We still suppose th a t they are 
made frequently enough and during the  in ­
terval between two successive observations 
the state of the system, i. e. our lu*, vary  
but sligh tly . In order to predict the result 
of the measurem ent at the instan t t, we can 
then confine ourselves to the firs t app rox i­
mation of perturbation  theory.

We have the following equation for the 
varia tion  of lka_ in the course of tim e,

exp [ i  1 ]  (6)
k,a.

exp

kl ->4,
(ka(ti). (9)

It gives in v irtu e  of the assumption (8):

-У. \Е ■>]
kl I gk (Eka- E lb? . (10)

The summation here can be replaced by 
an^ in tegration  in the usual way. We ob­
tain  in the probability  of the system being 
w ith in  the cell I , if i t  is w ithin the cell к 
at the instant t x:

Щ\<t) Г = : \ Е к1\ ' ( М г). (11)
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Besides it  m ust, of course, be ^
i

Hence

и'*л =  1 - 2 и'«- (12)
кф1

We have obtained formulae (11) and (12) 
provided the result of the measurement at 
the instant t x is known. If i t  is not so, there 
can still be considered the probabilities of 
its different results. Let them be

Pk= gkfk ( < )= 2 г* ( is)
a

In th is case the assumption (8) w ill be re­
written:

О Г ?  =  (80

Each measurement gives moreover a de­
fin ite  value of к , Hence, the states w ith 
different к  are incapable of in terfering  d i­
rec tly  after the m easurement: they refer 
then to different principal axes of the den­
sity m atrix . Therefore, at t =  0

h J f ? =  0 for к ф 1 .  ( Щ

Owing to th is condition the probabilities 
w ill sim ply be added together, and accord­
ing to (11) and (12) we obtain the predic­
tion for the resu lt of the next measurement 
at the instan t t:

э i Ui ( t )— fi w j  = 2 i W j  v* ~  h
к

Finally , considering the interval t ~ t l 
as infin itesim al, we get a differential equa­
tion for the d istrib u tio n  function f l (t) — the
kinetic equation:

gl dJ f  =  2  akl [/*(*) ~  /l (<)] • (16)
к

Here
n _  n _Skwkl__2™ gkgi | p  12 (л n\а и  -  аш - 1 “ I S f P H I  • (1 П

The second law of thermodynamics can 
now be derived. Let entropy be introduced:

s  = — 2  ь / , = 2  ^ ( ln ^ - ln л * м 18>
к к

This expression coincides practically  w ith  
the usual defin ition  of entropy as the loga­
rithm  of the phase extension. Indeed, in the 
macroscopic measurem ents the probabilities 
always give a sharp maximum at a certain 
к. The term s in the sum (18) relating to the 
values of к which differ considerably from 
this most probable к are vanishingly  sm all 
and can be neglected. In the term s, in which 
pk is not too small, In pk can be neglected 
as compared w ith  Ing^. Hence

£ = 2  Pk l n ^ = = ln g fc.
к

Owing to the sharpness of the m aximum  of 
pk it differs very l i t t le  from the logarithm  
of the m ost probable gk, the la tte r being, 
as a m atter of fact, an observable quan tity .

According to equation (16)

^1 = 2 aki ( / * - / i ) i n /*-
к, I

It gives after the usual symm etrization:

Щ  =  у  2  aki (/* ~  h ) (ln fk — ^ f i ) ,  (19)
к, I

whence it follows:

f  s . 0. (20)

The equality sign appears only if all f k are 
equal.

The law of increase of entropy is obtained 
here as a consequence of two assumptions. 
The first of them is Pau li's  condition (8') , 
referring to the states of any phase cell sepa­
rately . It is the probability hypothesis w ithout 
which sta tistical mechanics cannot be founded. 
Being accepted for some instant tx it w ill be 
satisfied throughout, all tim e for any value 
of k. This can be easily verified if the values 
of Ika and £/*з according to  (9) are put into 
(8) and the summation is then replaced by 
integration.

The second assumption is the condition 
(14) prescribing the absence of interference 
between the states referring to  different phase 
cells. Under this condition only equation (15) 
is obtained from (11) and (12). This assumption 
is, however, no longer arbitrary. Each measu­
rement gives a definite value of к and the s ta ­
tes with different к cannot interfere directly 
after a measurement. In the course of time the 
condition (14) is violated under the influence
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of equation (6), but the repeated measurements 
bring it every tim e about, the conditions of 
the valid ity  of the kinetic equation during 
the subsequent time interval being realized 
again.

In the same way in which we have obtained 
the increase of entropy after the measurement 
at the instant t 1} we could find its variation  
before t x or, for instance, before the next 
measurement at the instant t%. If we proceeded 
from the assumptions (8’) and (14) again, as 
from the in itia l or, ra ther, the final conditions 
we should obtain a decrease of entropy during 
the tim e interval tx to  instead of its increase: 
d S j d t ^ 0, in disagreement w ith (20). This 
follows from the reversibility of Schrodinger’s 
equation. But, as a m atter of fact, the 
condition (14) is not satisfied immediately 
before the measurement. It is satisfied only 
directly after each discrete measurement owing 
to the irreversible quantum  transition , accom­
panying it. We cannot, therefore, make use 
of the condition (14) as a final condition in 
the calculation of the entropy variation be­
fore t2. It would be an illegitim ate application 
of quantum  mechanics to obtain the probabi­
lities of the results of previous measurements 
by means of subsequent ones as mentioned 
in § 2. In order to obtain the correct results, 
we should proceed not from the functions 
ty(£3 +  0) but from the functions ф(£2—0) as 
from the final conditions, the form of these 
functions being not determined by the results 
of the measurement at the instant t 2. The 
difference between the functions <J>(£2 — 0) and 
*Ĥ 2 +  0) corresponds to the difference between 
the density matrices (3) and (4).

Likewise, to find the variation  of the entropy 
before the instant t± we must proceed, as from 
the in itia l condition, not from the results of 
measurement at the instan t t 1} but from the 
preceding measurement. Hence a monotonic 
increase of entropy actually results here, while 
classical sta tistical mechanics gives a minimum 
at the instant tx. This increase appears as a 
peculiar quantum  effect. It should be noted 
th a t at the instant of measurement the entropy 
is not altered. The measurement merely real­
izes the conditions of its increase, the equa­
tion (14) being every tim e confirmed.

4. Premises of the second law 
of thermodynamics

As we have shown, the entropy of a molecu­
lar system can only increase, the macroscopic

observations being repeated. Our proof rests 
upon the kinetic equation. In its derivation 
we have assumed th a t the tim e intervals be t­
ween the successive measurements are suffi­
ciently small and hence we can confine our­
selves to  the first approxim ation of pertur­
bation theory. We shall get rid  of this restric­
tion.

Irreversibility of quantum  mechanics is 
characterized by a quantity  suggesting еМГО-
Ру*.

o =  — Spur plnp, (2 1 )

p being the density m atrix . I t  can be called 
quantum  entropy.

The variation of quantum m atrices in the 
course of tim e under the influence of Schro- 
dinger’s equation is a contact transform a­
tion. Spur being a contact invarian t. H en­
ce the quantum entropy for an isolated sys­
tem does not vary  w ith  tim e. I t increases, 
however, discontinuously at every measure­
m ent. Indeed, le t the elem ents of the den­
sity m atrix  before the measurement be

?ka,ka' =  Pk&°M'* (3')

The m atrix  is supposed here to have been 
transformed to the diagonal form w ith res­
pect to the internal variables a. L et us m a­
ke i t  diagonal also w ith  respect to the ob­
servable variab les к :

pxv =  (22)

After the measurement the density m atrix  
w ill be diagonal in  the former k,  a-repre- 
sentation:

фк&,к'&' === РкаЬкк'^аа' • (4 )

Before the measuremnet the quantum entropy

=  (23)

* In the paper by O. K l e i n  (4) this quantity 
is identified with thermodynamic entropy. Any ad­
ditional hypothesis in the foundation of the second 
law of thermodynamics can then be avoided. But 
this is only possible if complete measurements are 
performed every time, i. e. all the quantities are observ­
ed whose simultaneous measurement is . permitted 
by quantum mechanics. The incompleteness of mac­
roscopic measurements is, however, a characteristic 
feature of statistical mechanics. There would be no 
problem if complete measurements were carried out.



QUANTUM MECHANICS AND THERMODYNAMIC IRREVERS IB I LIT Y t

after the measurement

^  — 2 р ы  ln  pka' (24)
k, a

Following Gibbs we shall introduce the 
quantities [c / .  0 .  K l e i n  (4)]:

Gka,x =  A ( ln A  — Inpka)— Px-i-Pk*; (25)

Gka,x^  0 for pkSl and p x ^ O .
L et Uka>\ be the reciprocal of the unitary  

m atrix  transform ing the density m atrix  
?ка,к'а' to the diagonal form. We have:

Pua^ \ U k a , x \ * P x \

к, a

5 Ж « , ь | 2= 1 .

(26)

M ultiplying Gka,K by \ Uka,x\2 and summing 
up w ith  respect to all suffices we obtain the 
desired result:

2 2 1  и ь«*\2Сы,х =  з2- о 1^ 0 .  (27)
ft, о X

We have, in effect, proved that to the den­
sity m atrix  w ith  vanishing non-diagonal ele­
ments there corresponds the greatest value 
of quantum entropy among the matrices w ith  
given diagonal elements. The non-diagonal 
elements are just cancelled by the m easure­
ment, the diagonal ones being unaltered.

Thermodynamic entropy according to (13) 
and (18) is

where pk -

(28)

Let us compare S  with a. For th is  pur­
pose we introduce sim ilarly  to (25):

Gka =  pka (In pka — In рк -f- In gk) —

0. (29)

Summing up w ith respect to к and a we find 
that after the measurement $ > a 2 and, the­
refore, also before the measurement S > .
6 Journal of P hysics, V ol. X I, N o. 1

Hence thermodynamic entropy in general 
cannot be less than the quantum  one:

5  >  a, (30)
An exhaustive answer to the question about 

the premises of the second law of therm odyna­
mics can be given now. Under P au li's  condi­
tion (8’) p k=gkPk* and after the measurement
S = a a. At subsequent measurements a can only 
increase. Hence, the condition (8’) being satis­
fied at the instant of a m easurement, the fol­
lowing measurements can only give higher v a ­
lues of the thermodynamic entropy. As a m at­
ter of fact, the quite general law of quantum  
mechanics is the increase of quantum  entropy.. 
Quantum entropy, is, how ever, not an obser­
vable quan tity . On the ground of macroscopic 
measurements one cannot even say whether 
the system is in a pure s ta te , foi* which o =  0 ,. 
or in a mixed one. Thermodynamic entropy 
only is an observable quantity . In those cases 
when it coincides, w ith a sufficient degree 
of accuracy, w ith quantum  entropy, we obtain 
the second law of therm odynam ics. P articu ­
la rly , S  and о coincide if the condition (8’); 
is satisfied.

We have been so far dealing w ith the results 
of observations on a molecular system. An abso­
lu tely  isolated system must moreover be inve­
stigated theoretically, being the system which 
is not subjected to  observations. The general 
properties of solutions of the wave equation 
for such a system are of a great importance,.

The works of v . N e u m a n n  (5) and of 
P a u l i  and F i e r z (6) deal w ith the prob­
lems of this k ind . The deviation of the time 
average of the entropy of an isolated system 
from the greatest possible value of the entropy 
is evaluated there; the necessary and suffi­
cient conditions of its being small have been
found.  I f  these conditions are satisfied and 
the  tota.1 en ergy  of the sy s tem  is g iven  then  
the state of the system for the greater part 
of time w ill be close to the microcano- 
nical one. The v. Neumann conditions are the 
inequalities which must be satisfied for every 
stationary  state of the system considered.

v. Neumann and Pauli and Fierz have given 
the sta tistical foundation of these conditions. 
They introduce the statistics for the operators 
corresponding to  the macroscopic measu­
rem ents, i. e. measurements for which only 
some averaged quantities are accessible. The 
v . Neumann inequalities are thus proved 
to be satisfied for almost all the operators,
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and. the probability to  encounter an operator 
not satisfying these conditions is quite small, 
provided the number of degrees of freedom of 
the system considered is very great.

Such a foundation seems to be not conclusi­
ve. Nothing proves th a t the operators for the 
real measurements are the most probable 
in v . Neum ann’s sense. Generally it is a proof 
replacing one hypothesis by another more 
complicated and, in this particular case, less 
founded. The inequalities of v.Neumann should 
be interpreted rather as the definition of a 
macroscopic measurement.

The valid ity  of v . Neum ann’s conditions, 
however, is hard to verify. For this purpose 
all the stationary states of the molecular 
system considered ought to be found. It is, 
therefore, reasonable to accept immediately 
the quasi-ergodic hypothesis, in the form desir­
ed for further argument as the probability 
assumption, also in quantum  sta tistica l mecha­
nics . It says tha t the time average of the pro­
bability  of the system, being in the states of 
any specified phase cell of the constant energy 
layer, is proportional to the number of these 
states, irrespective of the in itia l conditions: 

т
l i m y  \  pk dt  (31)

The summation is extended over the  whole 
constant energy layer, provided the  to ta l 
energy of the system is given.

This assumption being accepted, the mole­
cular system isolated for a long tim e m ust, 
first of all, be on the average in the state of 
statistical equilibrium  .This statem ent exhausts 
all th a t is accessible for classical statistical 
mechanics. It does not contain, however, any 
elements of irreversibility. If we take into con­
sideration two time instants, then at the latter 
instant the value of entropy may be lower or 
higher than at the former one w ith equal success 
even if these values are abnormally low.

On the contrary, the law of irreversible 
increase of entropy appears only in quantum  
sta tistical mechanics. The monotonic increase 
is here a consequence of the irreversibility 
of quantum  measurements. The increase of 
entropy $  results from the increase of quantum  
entropy a, the latter varying only at the in­
stants of measurement.

To detect the change of entropy two mea­
surements are necessary.These measurements 
themselves realize the conditions of the increase

of entropy and the measurement referring to 
the latter time instant must give a higher value 
of the entropy than  th a t referring to the ear­
lier one.There is no need of direct measurements 
precisely at the instants referred to . We 
often speak about the behaviour of the system 
not observed directly for the sake of conve­
nience only. Actually the measurements connec­
ted indirectly with the system and belonging 
even to a different time may be involved and 
this is sufficient for the appearance of irreversi­
bility .

We have obtained the increase of entropy 
when proceeding from P a u li’s assumption 
(8’). Let us try  to make clear its physical 
meaning. An im portant case of the increase 
of entropy is the following one. Suppose the 
external restrictions upon our system prescribe 
specified values of its macroscopic variab les,
i. e. the value of к before the instant t±. This 
value must thus be regarded as an external 
param eter. In a more general way the external 
conditions may be supposed to  prescribe the 
probability distribution of different values of 
к , i. e. the form of the distribution function /&.

Under these external restrictions our system 
must be in a free interaction with the surround­
ing bodies for a long tim e . The to ta l system 
consisting of our system and the surrounding 
bodies can be treated as isolated. The internal 
variables a of our system can then be conside­
red as the macroscopic variables of the to ta l 
system, its internal variables being the quan­
tities characterizing the state of the surround­
ing bodies. The entropy £  for such a composite 
system depends only on the distribution of 
values of the variables a. According to the 
quasi-ergodic hypothesis it must be close to its 
greatest value nearly always, the distribution 
of values of к being given. At the same time 
our system must be in the state of sta tistical 
equ ilib rium  w ith respect to the variables a. 
It can deviate from this state from time to time 
only as a result of fluctuations.

We can suppose tha t our observable system 
is a small part of the to ta l system. If the th ick­
ness of the constant energy layer AE  is con­
siderably less than the modulus of the canoni­
cal distribution then all the values of a w ithin 
the layer can be regarded as equally probable. 
Hence the condition (8’) must be satisfied 
nearly all tim es. W ith  neglect of the fluctua­
tions we can assume th a t at the instant tx 
it is satisfied as well.

If now at the instant tx the external restric-
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:ions are removed then the macroscopic variab­
les к can further vary  freely. The former state 
of conditional sta tistical equilibrium  w ill 
now be not a steady one and the following 
measurements w ill detect an increase of the 
entropy depending on the distribution of k ’s, 
-s has been shown above. The assumption (8’) 
will then be permanent in tim e.

As follows from our consideration the con- 
ept of probability in sta tistical mechanics 

.5 of dual origin. On the one hand, it is connec- 
:ed w ith the sta tistica l nature of the laws of 
quantum mechanics and w ith the random cha­
racter of the results of quantum  m easurem ents, 
leading to the increase of quantum  entropy c.

On the other hand, to establish the connect­
ion of observable entropy S  w ith  a we had to 
turn  to the quasi-ergodic hypothesis. The tran ­
sition from the averaging w ith respect to time 
to the assumption (8’) for a specified instant 
t1 implies the assumption of equal probabili­
ties of all time instants. It is the second source 
of the concept of s ta tis tica l probability .

It is possible th a t the future theory w ill 
allow us to get rid  of any additional hypothe­
sis in the foundation of s ta tis tica l mechanics 
and w ill then elim inate the duality  of the 
concept of probability.
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