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In the classical statiztical mechanics the quasi-ergodic hypothesis enables one only fo calcuiate
ihe time averages for an isolated system. It is insufficient for determining the ch’mw in the state
of a svstem dumno small time intervals and it does not lead, for instance, to the thermal conducti-
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It is a widespread op%n:on that the compiete
stabistical foundation of thmmodyn amics can
be obtained already on the basis of the laws
of classical mechanics. Even if there are some
vagueness and some logical gaps in the existing
proofs, it is believed that these gaps are of no
importance and in some way or other they can
be eliminated. This opinion is supported by
a great many experimental facts confirming
the laws of statistical mechanics.

In accordance with this standpoint,
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quite natural to search for the foundation
of quantum statistical mechanics along the
same lines as for the classical one. It was re-
peaiedly stated that quantum mechanics con-
tributes nothing of essential import to this
problem.

As we shall see, such an opinion cannot be
justified theoretically. As a matter of fact,
classical mechanics, owing to its perfect re-
versibility, does not enable one to obtain
statistical irreversibility. Only in quantum
mechanics there arise elements of irreversi-
bility, the second law of thermodynamics
being their macroscopic reflection.
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1. Classical statistical mechanics

It is well known that all the attempts of
the statistical foundation of thermodynamics
based on clagsical mechanics have encountered
serious difficulties (!). The concept of proba-
bility itself is foreign to rational classical
mechanics. Some postulates or hypotheses are,
therefore, inevitable for its introduction. The
fundamental Boltzmann H-theorem deals
with a perfect gas whose molecules obey the
laws of classical mechanics. The initial po-
sitions of gas molecules in the phase space are
the only things at our disposal for the enun-
ciation of a probability hypothesis. In order
to prove the H-theorem the following assump-
tion 1s necegsary: at a certain instant £, the
position of any molecule, 7. e. its phase, is to
be independent of the positions of all the other
molecules. Then during a small interval of
time ¢, to ¢, -} A¢ there is realized, in the first
approximation, the collision law leading to
Boltzmann’s kinetic equation and further
to the H-theorem. According to the latter the
entropy must increase during this time inter-
val, provided the distribution function differs
from the equilibrium one.

Classical mechanics is, however, quite rever-
sible. Our probability assumption, {. e. the
initial condition for the instant ¢, continues
to hold if the velocities of all the molecules
are replaced by their opposites without any
alteration in the relative positions of the mole-
cules. Therefore, such a replacement being
performed, the result cannot be changed. The
H-theorem requires accordingly at once that
the entropy should decrease during the time
interval ¢,— At to ;. This does not, of course,
contradict its increase after ¢,, one being an
inevitable consequence of the other. If the
assumption of the independence of the positions
of gas molecules in the phase space were per-
manent in the course of time, we should be
able to repeat the same argument for the instant
t,=t,+At. Instead of the entropy increase
during the interval ¢, to ¢, we should obtain
its decrease. This shows that such an assump-
tion cannot be maintained in time. Our con-
sideration is an argument of contraries and it
can easily be illustrated by simple examples.
If at the instant ¢, the phases of all the molecu-
les are independent, then after some time
macroscopically  distinguishable  molecule
groups will arise, their phases being not inde-
pendent. Hence, the assumption of the inde-

pendence of the phases of gas molecules can
be made for one ingtant £, only. Then at other
instants of time it will, in general, be not
satisfied.

The variation of entropy obtained above
does not correspond at all to that prescribed
by thermodynamics. Owing to the perfect
reversibility of classical mechanics a minimumn
quite symmetrical with respect to the time
1s obtained at the point #,. Such a variation
has nothing to do with the monotonic increase
required by thermodynamics. In fact, we have
obtained the reversible course of a thermal
fluctuation about the most probable wvalue
of entropy Smax =const,while thermodynamics
deals with the irreversible variation of the
most probable value, with neglect of sponta-
neous fluctuations. Let us suppose that at the
instant ¢, some temperature difference i:
detected. Then this temperature difference
must decrease in the past as well as in the
future. Just this behaviour corresponds to the
second law of thermodynamics. To our result
however, there corresponds the decrease of
the temperature difference in the future and
its increase in the past.

All instants of time are quite equivalent
in classical mechanics. Hence, only suech as-
sumptions can have a physical meaning whick
can be satisfied at every instant of time. The
assumption of the independence of the phase:
of gas molecules does not meet this requirc-
ment. Therefore, no real significance can be
attributed to 1it.

The ecriticism directed against the H-thec-
rem caused Boltzmann and Maxwell to pas:
on from the six-dimensional phase space fo
one molecule only to the many-dimensiona:
phase space for the whole molecular systen
considered. In order to give the laws of ste-
tistical physics the character of a purely meche-
nical necessity, they put forward the ergodi:
hypothesis. The latter is no longer a conditior
concerning the distribution of initial values.
It is an assumption referring to the structur-
of an isolated molecular system by itseli.
i. e. to the properties of the interaction force:.

In its initial form the ergodic hypothesis
proved to be logically inconsistent. The con-
sequent form of this hypothesis can be obtain-
ed asfollows. According to Ehrenfes t("
the ‘‘coarse-grained density’” in the phas-
space is to be introduced. It means that all
the phase space must be divided up into sui—‘
ficiently small but still finite cells. Instead
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of a continuous probability distribution in
the phase space we must consider the proba-
bilities of our molecular system being in
these phase cells. A layer in the phase space,
for which the total energy of the system falls
within given and also sufficiently narrow li-
mits, is to be considered. Then the quasi-
ergodic hypothesis states that the relative
time of the system being in any specified phase
cell of such a layer approaches the limit pro-
portional to the cell extension, irrespective
of the initial conditions, provided the time
interval taken into account increases indefi-
nitely. -

The entropy of the system satisfying this
quasi-ergodic hypothesis for the most part
of any sufficiently long time interval must
be near its greatest (microcanonical) value,
under given external conditions and a given
value of the total energy. It can deviate from
this greatest value only as a result of fluc-
tuations. In general, the macroscopically obser-
vable quantities for the system for the most
part of time must lie near their equilibrium
values, calculated by the averaging over the
whole constant energy layer. In other words
the quasi-ergodic hypothesis leads to the iden-
tification of the time averages with the phase
averages. Then it is possible to speak about
statistical equilibrium, temperature, etc.

This is, however, insgufficient if, instead
of averaging over long periods of time, we con-
sider the behaviour of a molecular system in
the course of time. Let at some instant ¢,
the values of macroscopically observabhle
quantities for our system be very different from
the equilibrium ones. The irreversible macro-
scopic equations as, for instance, the thermal
conductivity equation must follow from the
statistical laws. Definite changes of the values
of observable quantities in the course of time
arc prescribed by these equations beginning
with sufficiently small time intervals. The
latter are not to be regarded as infinitesimal
like the phase cell extension in the definition
of coarse-grained phase density. But they must
certainly he considerably less than the rela-
xation time, 7. e. the time necessary, on the
average, to approach the state of thermal
equilibrium.

In order to obtain the statistical laws for
the variations of the state of a system during
such small time intervals, we cannot use the
averaging with respect to the time. A further
hypothesis of the nature of the initial condi-
Bk

tion is here necessary. It can be enunciated as
follows. At a given instant of time the system
considered with equal probabilities may be
in all the points of its quasi-ergodic trajectory
compatible with the values. of macroscopic
quantities observed at this instant. In other
words, the probability of the system being
in any specified phage cell compatible with
the observed values of macroscopic variables,
is proportional to the cell extension.

Such an assumption of ‘‘equal probabilitics
of all permissible phase points’ 13 absolutely
necessary to obtain the statistical laws of the
variations of macroscopic quantities in the
course of time. If the value of the entropy of
a molecular system is abnormally low at &«
given time instant then at the next one i
may be higher or lower. Equal probabilities
of all permissible phases make it only possible
to consider the increase of entropy as its pro-
bable variation. The assumption of the inde-
pendence of the phases of gas molecules on
which the proof of the H- theorem is baged
is a special form of the assumption of equal
probabilities of all permigsible phases. The
assumption of equal probabilities of all
points of a certain small extension in the many-
dimensional phase space is another form of it,

The principal difficulty of classical stati-
stical mechanics met with in the discussion
of the H-theorem is here encountered in a more
general form, If we assume, as has just been
said, that at a certain instant ¢, all permissible
points of the phase trajectory are equally
probable then in the future, at ¢>¢, the
entropy is almost certain to increase. This
result is proved though for a perfect gas only;
but one can believe the behaviour of more
complicated molecular systems to be similar,
under sufficiently general assumptions. Our
initial condition for the ingtant 7, iz but
not altered by the replacement of all the
molecular velocities by their opposites. Hence
in the past at t <¢, the entropy should decrease
owing to the reversibility of classical mecha-
nics, ¢. e. there is abmost certain to be a mi-
nimum at the point #,. Further, if all permis-
sible phase points were assumed to be equally
probable at the instant ¢,— ¢, - Af then the
entropy, instead of increasing, should decrease
during the interval from ¢, to¢,. Hence, this as-
sumption cannot be satisfied at the instant 7,,
being accepted for the instant ¢,.

All the contradictions which we have obtain-
ed with respect to the H-theorem result thus
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here word for word. The assumption of equal
probabilities of all permissible phases also
cannot be preserved in the course of time.
I it is satisfied at the instant ¢, then it must
be violated under the influence of the laws
i classical mechanics at other instants of time
ch, as a matter of fact, differ by nothing.
Morcover, the irreversibility does not at all
‘olfow from this assumption. lt gives a mini-
mun on the reversible fluctuation curve only.
It i impossible to assume all permissible pha-
ses as equally probable for all times; such an
assumption contradicts the laws of classical
mechanies.

The question is thus not at all whether some
additional assumptions are mnecessary for the
classical foundation of thermodynamics. As
a matter of fact, there exist no assumptions
which could remove the obvious contradiction
between reversibility of classical mechanies
and drreversibility of thermodynamics.

Wik

2. Trreversibility of quantum mechanies

The concept of probability is intimately
conrected with  the fundamental notions ol
ctum inechanics. Therefore, 1t is natural
with its arrival there arises a hope to go
of any probability assumpiion in the ste
el foundation of thermodynamics. Indecd,

have appeared  ab dilferent
1 the fund: al laws of quan

e oobtained vncon-

Ay and wit

fowever, ab nearer ¢
docivations have proved to ie el
As o shown by Schrodinger (%)
P eauli (°) the probability assumptions are
necessary here as before. They appear in the
form of the assumption ol equal probabilities
of different eigenfunciions and of indepen-
dence of their phases.

The question, we are particularly interested
in, is the question of irreversibility. Quantum
mechanics is no longer entirely reversible, na-
mely, the measurement process in it is irre-
versible.

The principal problem of quantum mecha-
nics is to calculate the probability of any pos-
sible result of measurement abt some time In-
stant t,, provided the results of the preceding
measurement at the instant ¢; are known.
Tor this purpose the wave function ¢ (¢,) for
the instant ¢, or, more exactly, for the instant

t,+0 immediately following the instant ¢,
is to be determined, at first, according to the
result of the measurement referring to the
instant f£;, the measurement being treated
as instantaneous. Schrodinger’s equation must
then be solved with this ¢(z,) as initial con-
dition. The wave function ¢(£,—0) will thus
be found for the instant of time dircctly pre-
ceding the second measurement. The transi-
tion from O,(¢,+0) to ¢(t,—0) is reversible.
Ii the wave function 0=0¢*(,—0) has been
given for the instant ¢, + O we should
obtain O =10%(¢,40) for the instant ¢#,—O.
he replacement of the wave function by

its conjugate complex corresponds here to
the replacement of all momenta by their

opnosites,

Further our wave function must be expand-
ed in a series in termms of eigenfunctions o
of the operator corresponding to the physi-
cal gquantity observed at the instanl ¢,

(1)

\

k

The desired probability of any specified va-

NN
fue ol &

will then be

p.=1&" (2)

on from the funec-
. is here
hat the re-

g1 i,—i 1o w cerlain funetion
PPV i we do not know w
suit ol U second measurement is, 7. e, il
we do nobl knew what a function o has been
vesulted in, then we can still speak about
the irreversible transformation of the pure
state (1) with the density matrix

:'I:Ic’(t:‘._'o):gkgz' {3)

into the mixed state
Orre (t2 +O):‘EA 12 akkl, (4)

The first density matrix being written down
in the gj-representation while the second one
in the ¢;'-representation.

Let us now consider the inverse problem.
Suppose we are given the result of the measu-
rement at the instant ¢,. Are we then in a po-
sition to find the probability of any possible,
now unknown, result of the measurement
at the former instant £,?
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We can, certainly, apply the same scheme
of calculations in the inverse direction; it
does not lead, however, to the right result.
Indeed, if the result of the measurement at
the instant ¢, is known then we must take the
corresponding eigenfunction ¢, as the initial
or, rather, as the “final’’ condition for solving
Schrodinger’s equation in the direction of the
past. If we have the results of statistical obser-
vations for the instant ¢,, the density matrix
prre for the mixed state, according to (%) must
be taken as a final condition, being supposed
in the form (4) in the ¢z-representation. But
we thus get by no means the pure state ¢ (z,)
corresponding to the values of physical quan-
tities actually observed at the instant z,.
In order to obtain the wave function ¢(¢))
we should proceed not from the state (4)
but from the pure state (3).

To know the state (3) we must know the phase
differences between different ; in the expan-
sion (1), 7. e. we must also know the non-
diagonal elements of the density matrix {3).
Such an information cannot be obtained from
the measurements of the quantities k at the
instant Z,. On the basis of these measurements
we can proceed as from a ‘“final” condition
from the mixed state (4) only. Solving the equa-
tion of motion for the density matrix in the
direction of the past, we obtain a mixed state
for the instant ¢,-+0 as well. It will give the
predictions for the measurement at the instant
t, which will be in contradiction with the true
result. We ghall discover a discrepancy between
our predictions and experiment after this
result has been ascertained. Hence, the appli-
cation of the scheme of caleulations of quantum
mechanics in the inverse direction is illegiti-
mate. It leads to a disagreement with the
experiment.

On the other hand, classical mechanics is
quite reversible and it can be applied tosearch-
ing for the behaviour of the system consi-
dered in the past as well as in the future with
equal success. Classical mechanics, of course,
is an approximate, limiting form of quantum
mechanics. There arises the question how it
is possible to apply classical mechanics in
the direction of the past while this is impossible
for the quantum theory, the latter being the
exact form of mechanics.

Classical mechanics neglects in principle the
disturbance of the state of the system observ-
ed, accompanying the process of measure-
ment. Under this condition only we can speak

of the continuous trajectory. This means,
we must neglect the difference between the
states (3) and (4) in the classical approxima-
tion. But the state (3) is just the ‘“final’’ state
leading to the right predictions for the past,
the state (4) being known from the measure-
ments of the latter instant Z,. Hence the pre-
dictions of the past are only in so far possible
as it is permissible to neglect the irreversible
quantum disturbance of the system during
the process of measurement. )

The predictions of the past are, therefore,
always quite determinate, for the future quan-
tum, i. e. statistical predictions being also
possible. This fully agrees with our psychology,
It is customary to speak about the probabi-
lities of future events, but we never speak like
that about the past. The past may be known
or not, but it is always considered as being
quite definite, ’

3. The kinetic equation and the H-theorem

It is natural to connect the irreversibility
of thermodynamics with that of quantum
mechanics. We shall proceed from Pauli’s
generalized form of the H-theorem (%).

A macroscopic molecular system , ¢. e. the
system with a sufficiently dense spectrum, is
to be considered. Some approximately statio-
nary states ¢p, of this system must be taken
as aset of orthogonal functions. Certain values
of the energy can be ascribed to these states,
they will be diagonal elements of the complete
energy matrix in the corresponding represen-
tation. The non-diagonal elements cauge then
transitions between our approximately statio-
nary states. We assume that these transitions
can be treated using perturbation theory. This
implies certain restrictions on the choice of
the orthogonal functions.

Let us select from our approximately sta-
tionary states those for which the energy falls
within given sufficiently narrow limits. It
is our layer of constant energy, in its turn
being divided up into groups of states each
of which corresponds to a phase cell of classi-
cal statistical mechanics. Let £, I, ... be the
suffices of these cells, a, B, ... being suffices
of states in any cell. The number of states in
any cell will be g, being different for diffe-
vent cells. For the macroscopic measurements
some cells are always considerably larger than
others. In any case there must be g, > 1 {or
all %,
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Suppose the result of a macroscopic measu-
rement at some instant £, is known. It does
not mean that the state of our system at this
instant is known exactly, i. e. its wave func-
tion can be found definitely. The macroscopic
measurements are never complete, never give
the values of all the variables whose simulta-
neous measurement is possible in principle.
As a matter of fact, a small part of them is
determined by the measurements. We suppose
that the suffix of the cell k£ onlyis determined,
the state within the cell remaining uncertain.
There is no reason to assume the system to be
after the measurement in a pure state, permit-
ting the description by a wave function. The
system will, in general, be in a mixed state.
To describe such a state the density matrix
(v. Neumann’s statistical operator) must be
used. All the calculations become then quite
cumbersome. There is the second approxima-
tion with the density matrix which corresponds
to the first approximation of the usual method
of variation of parameters. We shall, therefore,
suppose for the sake of convenience that the
density matrix is transformed to its principal
axes. The state of our system will be describ-
ed as a superposition of non-coherent wave
functions corresponding to these principal
axes (eigenfunctions of the statistical operator).

Let us consider one of these functions. We
can expand it in a series in terms of the appro-
ximately stationary functions ¢r,. Let

q)(tl_'l—o):zgka‘:?ka. {5)

The value of & corresponds here to the re-
sult of observation.

In classical mechanics we might assume
that the observation is continuous, but in
guantum mechanid® measurements always
are discrete. We still suppose that they are
made frequently enough and during the in-
terval between two successive observations
the state of the system, i. e. our &, vary
but slightly. In order to predict the result
of the measurement at the instant ¢, we can
then confine ourselves to the first approxi-
mation of perturbation theory.

We have the following equation for the
variation of £, in the course of time,

hodigs i B
Tf»jf—:ZEmexp [';{(Eka‘—ﬁl5)t] Eka. (6)

Here Ep; are the diagonal elements of the
energy matrix, Ej; being the non-diagonal
elements; the dependence of the latter on a
and 8 is neglected.

The form of our funetions ¢ (¢, +0) can-
not be ascertained by the macroscopic mea-
surements referring to the instant #,. The
value of % only is definite, being the same
for any of these functions. The coefficients
£k« remain indefinite, having only to satisfy
the condition:

Nltulr=1 at t=2z,

Some assumption concerning the distribu-
tion of the values &r«(¢,) is further necessa-
ry. According to Pauli (®)) we must assu-
me that all §,. are equal with respect to their
moduli their phases being independent:

—— 9.,
Enabls = gf . 8)

(7)

The bar denotes here the averaging over
all the non-coherent wave functions. We
thus suppose statistical equilibrium within
the given phase cell. Owing to equation (6)
this assumption is to be satisfied through-
out all the time for cvery %k being accepted
for one instant only.

According to (5) only &3 for I =Fk are dif-
ferent from =zero at the instant ¢,. This
condition being preserved on the right-hand
side of equation (6), in the first approxi-
mation we get:

Bz (t) =
oxp [% (E j—E ) —1) ] 1
Epo—Eps

= HE” Eka(tl)- (9)

o

It gives in virtue of the assumption (8):
G ()=
. 1
4 sin® [—Q—h(Eka— E,s)(t—tl)]
Sk (E]:a—EZS)2

(10

The summation here can be replaced by
an_integration in the usual way. We ob-
tain in the probability of the system being
within the cell Z, if it is within the cell %
at the instant #;:

——— 27
Wi = E\iza(” == T&*’ Bl (t—2). (11
B
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Besides it must, of course, bez Wi =1.
l
Hence

(12)

Wi =1— 2 Wi

Ll

We have obtained formulae (11) and (12)
provided the result of the measurement at
the instant ¢, is known. If it is not so, there
can still be considered the probabilities of
its different results. Let them be

=g (8) = 2 [El” (13)

In this case the assumption (8) will be re-
written:
El‘aE;‘cS = f]; (Z) aaﬁo (8,)
‘ Each measurement gives moreover a de-
f]_m'te value of k. Hence, the states with
different & are incapable of interfering di-
rectly after the measurement: they refer
then to different principal axes of the den-
sity matrix, Therefore, at ¢ =1¢,+0
Erably =0 for k= L. (14)
Owing to this condition the probabilities
will simply be added together, and accord-
ing to (11) and (12) we obtain the predic-
tion for the result of the next measurement
at the instant ¢:

g [ (0 = Fr (0] =D zawan 1 (82) = F1(2)]- (15)
k
Finally, considering the interval z—¢,
as infinitesimal, we get a differential equa-
. tion for the distribution function f; (¢) — the
kinetic equation:

d .
@M= aulh)—H®].  (16)
k
Here
), 9 -
@ =alk=tg¥t¥ =T Eul. (D)

The second law of thermodynamics can
now be derived. Let entropy be introduced:

S=— Z grfrInfr= Epk(ln gi—1n p;).(18)
k k

This expression coincides practically with
the usual definition of entropy as the loga-
rithm of the phase extension. Indeed, in the
macroscopic measurements the probabilities
always give a sharp maximum at a certain
k. The terms in the sum (18) relating to the
values of & which differ considerably from
this most probable %k are vanishingly small
and can be neglected. In the terms, in which
Pr 1s not too small, In p, can be neglected
as compared with 1ng,. Hence

S%Epklngk=1@.
k

Owing to the sharpness of the maximum of

pr it differs very little from the logarithm

of the most probable g,, the latter being,

as a matter of fact, an observable quantity.
According to equation (16)

ds
o= au (fr—)1n fre
k, 1

It gives after the usual symmetrization:

=5 Daulfi— A (nfe—Inf), (19)
k, 1

whence it follows:

ds

it = 0.
The equality sign appears only if all f, are
equal.

The law of increase of entropy is obtained
here as a consequence of two assumptions.
The first of them is Pauli’s condition (8),
referring to the states of any phase cell sepa-
rately. It is the probability hypothesis without
which statistical mechanics cannot be founded.
Being accepted for some instant ¢, it will be
satisfied throughout, all time for any value
of k. This can be easily verified if the values
of &1« and £j; according to (9) are put into
(8) and the summation is then replaced by
integration.

The second assumption is the condition
(14) prescribing the absence of interference
between the states referring to different phase
cells. Under this condition only equation (15)
is obtained from (11) and (12). This assumption
is, however, no longer arbitrary. Each measu-
rement gives a definite value of 4 and the sta-
tes with different & cannot interfere directly
after a measurement. In the course of time the
condition (14) is violated under the influence

(20)
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of equation (6), but the repeated measurements
bring it every time about, the conditions of
the validity of the kinetic equation during
the subsequent time interval being realized
again.

In the same way in which we have obtained
the increase of entropy after the measurement
at the instant ¢,, we could find its variation
before ¢, or, for instance, before the next
measurement at the instant ¢,. If we proceeded
from the assumptions (8’) and (14) again, as
from the initial or, rather, the final conditions
we should obtain a decrease of entropy during
the time interval ,t01,, instead of its increase:
dS|dt <0, in disagreement with (20). This
follows from the reversibility of Schrodinger’s
equation. But, as a matter of fact, the
condition (14) is not satisfied immediately
before the measurement. It is satisfied only
directly after each discrete measurement owing
to the irreversible quantum transition, accom-
panying it. We cannot, therefore, make use
of the condition (14) as a final condition in
the calculation of the entropy variation be-
fore ¢,. It would be an illegitimate application
of quantum mechanics to obtain the probabi-
lities of the results of previous measurements
by means of subsequent ones as mentioned
in § 2. In order to obtain the correct results,
we should proceed not from the functions
O(t,+0) but from the functions ¢(2,—0) as
from the final conditions, the form of these
functions being not determined by the results
of the measurement at the instant #,. The
difference between the functions ¢(¢z,—0) and
U(¢, + 0) corresponds to the difference between
the density matrices (3) and (4).

Likewise, to find the variation of the entropy
before the instant ¢, we must proceed, as from
the initial condition, not from the results of
measurement at the instant Z,, but from the
preceding measurement. Hence a monotonic
increase of entropy actually results here, while
classical statistical mechanics gives a minimum
at the instant ¢,. This increase appears as a
peculiar quantum effect. It should be noted
that at the instant of measurement the entropy
is not altered. The measurement merely real-
izes the conditions of its increase, the equa-
tion (14) being every time confirmed.

4. Premises of the second law
of thermodynamiecs

As we have shown, the entropy of a molecu-
lar system can only increase, the macroscopic

observations being repeated. Our proof rests
upon the kinetic equation. In its derivation
we have assumed that the time intervals bet-
ween the successive measurements are suffi-
ciently small and hence we can confine our-
selves to the first approximation of pertur-
bation theory. We shall get rid of this restric-
tion.

Irreversibility of quantum mechanics is
characterized by a quantity suggesting entro-
py*:

o=—Spurglnp, (21)
p being the density matrix. It can be called
quantum entropy.

The variation of quantum matrices in the
course of time under the influence of Schro-
dinger’s equation is a contact transforma-
tion. Spur being a contact invariant. Hen-
ce the quantum entropy for an isolated sys-
tem does not vary with time. It increases,
however, discontinuously at every measure-
ment. Indeed, let the elements of the den-
sity matrix before the measurement be

3

The matrix is supposed here to have beer
transformed to the diagonal form with res-
pect to the internal variables a. Let us ma-
ke it diagonal also with respect to the ob-
servable variables k:

Pka, ket = Pkabass.

(22)

P = il

After the measurement the density matrix
will be diagonal in the former %, a-repre-
sentation:

(4")

Before the measuremnet the quantum entropy

o
Pka,k'a’ = PkaOkk:Oaa’ -

5=— Xnlop, (23)

* In the paper by O. Klein () this quantity
is identified with thermodynamic entropy. Any ad-
ditional hypothesis in the foundation of the second
law of thermodynamics can then be avoided. But
this is only possible if complete measurements are
performed every time, i. e. all the quantities are observ-
ed whose simultaneous measurement is . permitted.
by quantum mechanics. The incompleteness of mac-
roscopic measurements is, however, a characteristic
feature of statistical mechanics. There would be nc-
problem if complete measurements were carried out.
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after the measurement

Gy = '—2 Pka In Pka. (24:)
k,a
Following Gibbs we shall introduce the
quantities [c¢f. O. Klein (%)]:
Grap.= pr(In py—1n pre)— i+ pra;  (25)

Grap=0 for prs and pp=0.

Let Upgqn be the reciprocal of the unitary
matrix transforming the density matrix
ke, kvar 10 the diagonal form. We have:

Pra= }: | Uka| 2 )
X

N Uker =15 ¢ (26)

k, a
N Uk =1. I

I8

Multiplying Gjax by [Uken|* and summing
up with respect to all suffices we obtain the
desired result:

2 2 | Utap |? Grap=0,—0, = 0. (27)

k,a )

We have, in effect, proved that to the den-
sity matrix with vanishing non-diagonal ele-
ments there corresponds the greatest value
of quantum entropy among the matrices with
given diagonal elements. The non-diagonal
elements are just cancelled by the measure-
ment, the diagonal ones being unaltered.

Thermodynamic entropy according to (13)

and (18) is

S=El’k (Ing;, — In g, ), (28)

k

Where Pr= E Pka-

Let us compare § with o. For this pur-
pose we introduce similarly to (25):
Gra= pre (10 pra—1In p;+1In g;) —

— Prat g =0. (29)
Summing up with respect to £ and o we find
that after the measurement S>o, and, the-
refore, also before the measurement S>>s,.
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Hence thermodynamic entropy in general
cannot be less than the quantum one:

S>o, (30)

An exhaustive answer to the question about
the premises of the second law of thermodyna-
mics can be given now. Under Pauli’s condi-
tion (8’) pr=gxPk. and after the measuremecut
S =g,. At subsequent measurements s can only
increase. Hence, the condition (8’) being satis-
fied at the instant of a measurement, the fol-
lowing measurements can only give higher va-
lues of the thermodynamic entropy. As a mat-
ter of fact, the quite general law of quantum
mechanics is the increase of quantum entropy..
Quantum entropy, is, however, not an obser-
vable quantity. On the ground of macroscopic
measurements one cannot even say whether
the system is in a pure state, for which ¢=0,
or in a mixed one. Thermodynamic entropy
only is an observable quantity. In those cases
when 1t coincides, with a sufficient degree
of accuracy, with quantum entropy, we obtain
the second law of thermodynamics. Particu-
larly, S and o coincide if the condition (8}
is satisfied.

We have been so far dealing with the results
of observations on a molecular system. An abso-
lutely isolated system must moreover be inve-
stigated theoretically, being the system which
is not subjected to observations. The general
properties of solutions of the wave equation
for such a system are of a great importance.

The works of v. Neumann (°) and of
Pauli and Fierz (°) deal with the prob-
lems of this kind. The deviation of the time
average of the entropy of an isolated system
from the greatest possible value of the entropy
is evaluated there; the necessary and suffi-
cient conditions of its being small have becen
found. If these conditions are satisfied and
the total energy of the system is given then
the state of the system for the greater part
of time will be close to the microcano-

nical one. The v. Neumann conditions are the
inequalities which must be satisfied for every
stationary state of the system considered.

v. Neumann and Pauli and Fierz have given
the statistical foundation of these conditions.
They introduce the statistics for the operators
corresponding to the macroscopic measu-
rements, {. ¢. measurements for which only
some averaged quantities are accessible. The
v. Neumann inequalities are thus proved
to be satisfied for almost all the operators,
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and the probability to encounter an operator
not satisfying these conditions is quite small,
_provided the number of degrees of freedom of
the system considered is very great.

Such a foundation seems to be not conclusi-
ve. Nothing proves that the operators for the
real measurements are the most probable
in v. Neumann’s sense. Generally it is a proof
replacing one hypothesis by another more
complicated and, in this particular case, less
founded. The inequalities of v.Neumann should
be interpreted rather as the definition of a
macroscopic measurement.

The validity of v. Neumann’s conditions,
however, is hard to verify. For this purpose
all the stationary states of the molecular
system considered ought to be found. It is,
therefore, reasonable to accept immediately
the quasi-ergodic hypothesis, in the form desir-
ed for further argument as the probability
assumption, also in quantum statistical mecha-
nics. It says that the time average of the pro-
bability of the system, being in the states of
any specified phase cell of the constant energy
layer, is proportional to the number of these
states, irrespective of the initial conditions:

N3

lim o \ podt =8 (31)

T—o0

[=}

The summation is extended over the whole
constant energy layer, provided the total
energy of the system is given.

This assumption being accepted, the mole-
cular system isolated for a long time must,
first of all, be on the average in the state of
statistical equilibrium.This statement exhausts
all that is accessible for classical statistical
mechanics. It does not contain, however, any
elements of irreversibility. If we take into con-
sideration two time instants, then at the latter
instant the value of entropy may be lower or
higher than at the former one with equal success
even if these values are abnormally low.

On the contrary, the law of irreversible
increase of entropy appears only in quantum
statistical mechanics. The monotonic increase
is here a consequence of the irreversibility
of quantum measurements. The increase of
entropy S results from the increase of quantum
entropy o, the latter varying only at the in-
stants of measurement.

To detect the change of entropy two mea-
surements are necessary. These measurements
themselvesrealize the conditions of the increase

of entropy and the measurement referring to
the latter time instant must give a higher value
of the entropy than that referring to the ear-
lier one There is no need of direct measurements
precisely at the instants referred to. We
often speak about the behaviour of the system
not observed directly for the sake of conve-
nience only. Actually the measurements connec-
ted indirectly with the system and belonging
even to a different time may be involved and
this is sufficient for the appearance of irreversi-
bility.

We have obtained the increase of entropy
when proceeding from Pauli’s assumption
(8’). Let us try to make clear its physical
meaning. An important case of the increase
of entropy is the following one. Suppose the
external restrictions upon our system prescribe
specified values of its macroscopic variables.
. e. the value of & beforethe instant #,. This
value must thus be regarded as an external
parameter. In a more general way the external
conditions may be supposed to prescribe the
probability distribution of different values of
k,i.e.the form of the distribution function f.

Under these external restrictions our system
must be in a free interaction with the surround-
ing bodies for a long time. The total system
consisting of our system and the surrounding
bodies can be treated as isolated. The internal
variables a of our system can then be conside-
red as the macroscopic variables of the total
system, its internal variables being the quan-
tities characterizing the state of the surround-
ing bodies. The entropyS for such a composite
system depends only on the distribution of
values of the variables «. According to the
quasi-ergodic hypothesis it must be close to its
greatest value nearly always, the distribution
of values of & being given. At the same time
our system must be in the state of statistical
equililbrium with respect to the variables a.
It can deviate from this state from time to time
only as a result of fluctuations.

We can suppose that our observable system
is a small part of the total system. If the thick-
ness of the constant energy layer AE is con-
siderably less than the modulus of the canoni-
cal distribution then all the values of & within
the layer can be regarded as equally probable.
Hence the condition (8’) must be satisfied
nearly all times. With neglect of the fluctua-
tions we can assume that at the instant ¢,
it is satisfied as well.

If now at the instant ¢, the external restric-
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-ions are removed then the macroscopic variab-
=3 k can further vary freely. The former state
-f conditional statistical equilibrium will
now be not a steady one and the following
measurements will detect an increase of the
-ntropy depending on the distribution of A’s,
:: has been shown above. The assumption (8)
will then be permanent in time.

As follows from our consideration the con-
ept of probability in statistical mechanics
s of dual origin. On the one hand, it is connec-
2d with the statistical nature of the laws of
;uantum mechanics and with the random cha-
-acter of the results of quantum measurements,
~2ading to the increase of quantum entropy .

On the other hand, to establish the connect-
ion of observableentropy S with ¢ we had to
turn to the quasi-ergodic hypothesis. The tran-
sition from the averaging with respect to time
to the assumption (8’) for a specified instant
¢, implies the assumption of equal probabili-
ties of all time instants. It is the second source
of the concept of statistical probability.

It is possible that the future theory will
allow us to get rid of any additional hypothe-
sis in the foundation of statistical mechanics
and will then eliminate the duality of the
concept of probability. ‘
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