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A simple derivation of the electric and magnetic fields of multipoles is given.

The expressions for the potentials and the
fields of electric and magnetic multipoles are
given in a paper by Heitler (*). However,
Heitler’s method is somewhat cumbersome
and artificial; the gauge of Heitler’s poten-
tials is inconvenient in one of the most impor-
tant applications of the multipole potentials —
the calculation of the coefficients of internal
conversion of y-rays (?). Therefore, it seems
reasonable to propose a simple derivation
of the multipole potentials.

1. Consider firstly the scalar potential ®(r)
satisfying the wave equation

(A_E’z—g;) @ (r)=0.

The general solution of this equation is

1 . )
(1) = S ® (k) e (dk) + c.c. (1)
Here in @ (k) is involved the time factor e7**,
(dk) =k*dkdo is the volume element of the
wave vector in k-space; ¢. ¢. stands for “‘comp-
lex conjugate expression’’. We are interested
in the angle dependent part of ® (k). If we
represent @ (k) in the form:

O (k)= > (K, 1), (2)
1=0
l
Ok )= X (=" (k) YT (3, 9), (3)

m=—1

O, k)= 2 B (—0)ei (8) VT, D) £ (kr) 4.,

where & and ¢ are the spherical angles 1n
k-space, Y7' (8, ¢) — spherical harmonics, which
we consider to be normalized to unity, quan-
tities @ (k, /) and @ (k) must be scalars and
the coefficients ¢f' transform under rotation
of coordinate system as YT, i. e. according
to the (2/-4-1)-dimensional representation of
the rotation group. For brevity we shall call
in the sequel such a set of quantities an
[-vector. Potential determined by the [-vector
¢t we call ““potential of the 2%-pole’’. Accord-
ing to the expansion (2), (3) we write

@ (r) = S dk B, k, ). (4}
E 1

Using the familiar expansion

o= dm > iy (k) YT, @) Y0, §), (5
13 m

where 6 and & are the spherical angles in
the space and -

T J (kr)
f0er) = ‘/T 141/

]/]“. (G}

(J —the Bessel function), we obtain alter
integration with respect to k:

(7)
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2. For the vector potential we write simi-
larty to (1)

A=

SA(k)e‘kf(dk)+c c. (8

In the expansion of A (k) there arises the
problem of construction of a vector from
{-vectors of multipole coefficients -and sphe-
rical harmonics. We can consider wvector A
as a I-vector:
A=A, A*l=4 —
s V

{the lower index of I-vector is dropped).
Such a construction can be realized simply
with the help of the Clebsch-Gordon formula
for the reduction of the product of two repre-
sentations of a rotation group into irreducible
representations. If two l-vectors U7* and Vi,

are given, one can build an Zvector Wi

cEidy) (9

Wr= B (o) URVE 10
mi-mg=m
W=, LA, |1, —1,!. The

braclets in (10) denote the coeffu,lents which
can be found in the books on the group
theory (%).

It must be noted that /-vectors can differ
(for the same value of /) by the character
of transformation under reflection. Similarly
to the usual vector terminology we call ‘‘the
polar I-vector” lveotor which gets by re-
fiection a factor (—~1) and ““the axial” or
““the pscudolwemor one which gets the
factor (—1)""'. The spherical harmonic and
the potential sre polar l-vectors. [-vectors of
multipoles can be of both tvpes; polar multi-
pole vectors are usually named clectric and
axicl ones— magnetic.

A", k, )=

m

/9 m-- kN
Vo2 (= () 1 YT (0, B) Fy (k) o0 o

3. From the form of formula (3), which
is a particular case of (10), it is seen that
it is impossible to construct the scalar poten-
tial from pseudo-/-vector and spherical harmo-
nics (since @ is a scalar but not a pseudo-
scalar). Hence for a magnetic multipole

d=0. (11}
For the vector potential of a magnetic mul-
tipole we obtain using (10), the following
expression in which /z’" stands for the multi-

pole coefficients
)= D A%k, 1),
1
(12)

— E(_,l)m/”m(k),\{mpym-!—u(a o)

m

A* (k
A!L (k,

quantities yll are the particular form of the
AN o]

coefficients in (10)
{ 1
k_“ ,\‘,mu—<——:n m-f- lu)

determined with an accuracy up to a factor
depending upon [.
With certain normalization

. m A
Tmo ™= VTaEn
(13)
. (0 m2) (1= m—- 1)
i%}11‘!:1~ + ]/— A+ 1) -
It we nub similarly to (4)
;1}1- } = S kd > z‘P'(]_', .’il':, L]), (\14)

l

we get from (12) and (8) using expression (6)

(15)

Elestrie field of the magnetic multipole is given by

B (k) =ik A (k).

Hence, according to (12)

E* (K, 1) —»kE (— 1™ A" (R) Yy Y (9, o)

(16)
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and

E e b D=1 2k S (= O A () yh YT (8, ) £, (kr)d-c. e A7)
w o

For the determination of the magnetic field we shall use the expression:

H (k) =i [kA (k)]
or

HP' (k) — _l/-z—k 2 Y;W ( —_— 1)cn—c ‘4}"'}-0 (k),

where Kk is represented in the form of an I-vector

k¥ =Fkn*; n®=cos 9; ni1=j:-]—/1—§—sin8eif?, (18)
and the vector product is also written in l-vector form. Using the known relations:
ARY ] = oy YU A (— 1) Y07 (19)
where
bt/ UH=mFiEm, o SUEmTH(Lmty),
m0 = @ F1)y@i+3)y 1 TmEt= 2QIF 1) (2UF4)
(20}
Bho=1/ L=m)(+m). B! _.‘/UTrm)(z:Lm-i)
mO= Y QI 1) 20—1)° mEl = 2020+ 1) (2 —1) °

Hence we obtain for H

H (&, )=k 3 (— 1" (k) [;/lj{l o YT (8, 9)— 1/ 00 (— 10 Bl YT 9, @)J;(M}
m
H(r, b )= .‘?f’“k‘?(_i)mhmk)[l/ L ab YT (0, &) /., (k) +
) 1Y, P d 151 muy +1 > l+1

+1/”’Bm —RYTH (0, @) fiy (k) | e e (22)

4. For the vector potential of an electric multipole formula (10) permits us to construct
the following general expression

7

A (K, )= 2 (= 1" ar™ (k) am YT (9, 0) + 3 (— 1™ 67 (B) (— 1P Bl YT (9, 9). (23}

m

Here ' and b' ere two arbitrary inde-

or
pendent [-vectors; coefficients oc,ﬁm =(—1"

@ (k, |) = E(_— Ve A* (k, 1)
Z r]
—In )n"]—

> dB —qm /' (—1 1) w
B —n mtplp leads [with the help of (19)] to the follow-

ing relation between ', b7 and ¢}
tical with the coefficients in (19). m_ m n 04
For scalar potential we have the expres- (@l Del =+ 1)al + 7. (24)
sion (3) in which the Lorentz condltion: The electric field is

® (k) =nA (k) E (k) =ik [A (k)—n @ (k)],

can be rade by a certain normalization iden-
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B (&, 1) =ik ¥ (—1 md%(k)hf l1aanlT"({} go)——‘/» T 1yesl, Y (9, q;)], (25)

where

P —

W‘l / l l ] wm 1
di Y 71(;:% )( — o). (26)

The magnetic field is readily determined by means of the relation
H(k)=[nE k)], E(&) = —[nH(k)].

Notmg that (25) has the form of (21), we conclude that H"(k, [; must have the form
(16). The comparison gives :

e

m

H (&, D)=k S (= )" (1) vl YT (3, 9). @7)
Again, by the transformation of the type (3)—(7) we find

e, b, D= )/ T S (A () Y 0 ) o Ger)

— ™ (k) (— DB Y T (0, ) i (f SR (28)

Ee(r, k, )= — 1/“% S‘ —ymdr [ A YR (0, D) fp,, (Br) 4
+ ‘/ L (=Yt (0, By AM] e (29)
e,k =) L ik 2, P (k) g Y 7 (0, D) £ () e c. (30)

The eoxpressions for the field veetors B~ o B

and H involve one [-vector di determined 5. The quantized field amplitudes one can
. T . o .

according to (26). [-vectors af and B, obtain from the energy expression
entering the expression for the potenbials,
soparately are arbitrary. This is in accor- W= 5 | B (k)P(dk)x,}. S!H(k)?!’dk).(33)
dance with the gauge invariance of the h: d dn im ) P
vectors. We may put in particular =0 ) N . .
fHeivler’s potential), Then from  (24) Expanding ¥ (k) and H(k) into series of
) multipole fields we get

pr—
m__ iz YRR }
a7y - V,— - A M’:@}Q};{Wﬂ(l@ I, m)y+
I m %
] -
by = i/ - -dl (P =10). (31) = Winagn (k, I, m)}, (3%)
where

1t we 7=0, t
we put aj , then We(k, I, my=y-

i

b = 204 1 d Ak
‘T VI < |d% (k) ok,

(k) |2k dE =

m i n m A“i m
= ‘/l+1d @r=0). (32 Winsan (K, 1, m) = o | 47 (k) * Ak
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On the other hand, putting
W e (k, I, m)="hcke"t,

magn

(36)
where £ are the usual oscillator operators,
satisfying the commutation rule

g —trt =1,
we f{ind:

V Zieakdr (k) =2 ek 8ks;  (3T)

and similarly for A7 (k). In the left-hand
side of (37) we mclude the factor which
always enters together with d7 (and A7,
correspondingly) 1into the expressions for
potentials and fields (8), (15), etc.

Let us write also the expression for the

probability of the emission of a given quan-
tum by any non-relativistic system, i. e. under
the interaction law
V=—gnAptpA) e (38)
(p—operator of the momentum). The dimen-
sions of the system are supposed to be small
as compared with the wave length of radia-
tion
kr <1, (39)
Such a probability gives the estimation of
the life-time of the excited states of nuclei.
Using, e. g. the potentials (28) and the
condition (31), we get* the following expres-
sion for the emission probability

f;'ilZ B (p~BQUHE - QM p ) ‘l‘.

N bl I Gt L R RTRPE
Ner=—- <°Mc> - - [ =1 ] (40)
Here eQp7 is the eleciric 20-pole moment of the system, given by
m:: ‘/_!*_7:___,_1}'1!\ ’Fj (i)). (41)
l 2l+1 1\ E
The normalization in (41) is such; that
SQrp=r
m
{In the brackets in (40) is meant the matrix element of the corresponding operator.]
It can be shown that similarly to the relation
dr _ P
di m
it holds
dm 1 [ —1 N - . ST I ep—Ty A
4T _ et @p = CEEDOIZD L, (vt + Qo). (42)
1
which allows to transforin (40) into the form
(l\ 2 5+1 al-1{l "“”1] hzlal m2 9
Nei=gm7 [ o= | QT | (43)

Using the potentials (15) we obtain the expression of the cmission probability for the

magnetic 2!-pole
SNy AR

(1) 7
N = @riyg 7 LON (44)

* Qwing to (39) it is possible to disregard the lirst term in (28) and to put

m
k)
fi (kr) = ——— (Zl 0 (krye.
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where the magnetic multipole moment of the system is determined as

» /TIED) b w0V ETFDH @D e
M7 =gz { —¢ VIOFD B (—1p th Qoo LDV EEDCED St omisan) (45
m

-
(0' is Pauli’s spin operator).

6. In constructing the expressions for the
potentials of multipole field it is not necessary
to start from the solution (1) and (8), using
further the expansion in the k-space. It is
possible to solve the wave equation in sphe-
rical harmonics immediately. In this case the
transformation properties determine the cha-
racter of the separation of variables and we
arrive at the expressions (7), (15) and (28),
where we must consider f;(kr) as a solution
of the corresponding equation for radial func-
tion. If we choose the radial functions (6)
without singularities in the origin we obtain
the solution with the energy flux vanishing
at infinity (standing wave). If it is necessary
to obtain the solution with a non-vanishing
energy flux at infinity (radiation of classical

dnnd
[

where H, ., (kr)is the Hankel function of the
first kind. Such solutions have the poles in
the origin. In particular, the vector-potential
of the electric field (28) will have the pole
of (I41)th order [the first term in (28)].
However, if we choose the coefficients accord-
ing to (32) only the pole of (I—1)th order
remains. These are the only potentials ade-
quate for the calculation of the internal con-
version coefficients.

If we put in (46)}/"2/x-c=1,the energy flux
of the multipole corresponds to the emission
probability

m i, Mg
ol 2 y LA
N = NO

n2hk magn~ x2hk °

(47)

multipole) we have to choose: Comparison of (47) with (43) and (44) gives
the connection between the coefficients d7
f;(kr)_—.cHH”Efkr) (46) and A7 and the electric and magnetic 2!-pole
Vir momenta of the radiating system.
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