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ELECTROMAGNETIC FIELD OF MULTIPOLES 
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A simple derivation of the electric and magnetic fields of multipoles is given.

The expressions for the potentials and the 
fields of electric and magnetic multipoles are 
given in a paper b y H e i t l e r  (*). However, 
Heitler’s method is somewhat cumbersome 
and artificial; the gauge of Heitler’s poten­
tials is inconvenient in one of the most impor­
tant applications of the multipole potentials —  
the calculation of the coefficients of internal 
conversion of y-rays (2). Therefore, it seems 
reasonable to propose a simple derivation 
of the multipole potentials.

1 . Consider firstly the scalar potential Ф(г) 
satisfying the wave equation

The general solution of this equation is

Ф ^  =  ( 2 ^ 7» S  ф (к ) e<kr(c?k) +  c.c. ( ! )

Here in Ф (k) is involved the time factor erlchi, 
(dk) =  k2dhd& is the volume element of the 
wave vector in k-space; c. c, stands for “ comp­
lex conjugate expression” . We are interested 
in the angle dependent part of Ф (k). If we 
represent Ф (k) in the form:

oo

®(k) =  2 ® (k, 0 . <2)
1-0

I

ф (k, I) =  2  ( -  1)ic"  ( * ) Y ? ?)*
m= - 1

where $ and 9  are the spherical angles in 
к-space, F f  (ft, 9 ) — spherical harmonics, which 
we consider to be normalized to unity, quan­
tities Ф(к, I) and Ф(к) must be scalars and 
the coefficients cf transform under rotation 
of coordinate system as Y f ,  i. e. according 
to the (21 - f  l)-dimensional representation of 
the rotation group. For brevity we shall call 
in the sequel such a set of quantities an 
/-vector. Potential determined by the /-vector 
cf we call “ potential of the 2г~ро1е’ \ Accord­
ing to the expansion (2), (3) we write

Ф (г )=  ^ к Ч к ^ Ф ( т ,  к, I). (4)

Using the familiar expansion

ear =  4 * V  ilf l {kr) 2  Y f  (&, 9 ) Y f  (6, Ф), (5)
I m

where 6 and Ф are the spherical angles in 
the space and

/< ( '"• > = / f  №

(J — the Bessel function), we obtain after 
integration with respect to к :

Ф (г, k , l ) = ] / ^ i l ' Z ( - l ) mcim(k )Y?(<} ,$ ) fl{kr) +  *. с. (7)
m

—  85 —



86 Y . BERESTETZKY

*-2. For the vector potential we write simi­
lar] у to (1)

A (r) =  (2* j ^   ̂ A (k) eikr(^k) +  C- c - (8 )

In the expansion of A (fe) there arises the 
problem of construction of a vector from 
/-vectors of m ultipole coefficients and sphe­
rical harmonics. We can consider vector A 
as a I  “Vector:

A* =  Azi A ^  =  ± ^ f (Ax ± i A „ )  (9)

(the lower index of 1 -vector is dropped).
Such a construction can be realized simply 

with the help of the Clebsch-Gordon formula 
for the reduction of the product of two rep re ­
sentations of a rotation group into irreducible 
representations. If two /-vectors Uf± and F^ 2 
are given, one can build an /-vector W f :

W f  = (10)

1 , - 1 2 Г The

3. From the form of formula (3), which 
is a particular case of (1 0 ), it is seen that 
it is impossible to construct the scalar poten­
tial from pseudo-Z-vector and spherical harmo­
nics (since Ф is a scalar but not a pseudo- 
scalar). Hence for a magnetic multipole

Ф =  0. (11)

For the vector potential of a magnetic mul­
tipole we obtain using (1 0 ), the following 
expression in which hf  stands for the multi­
pole coefficients

#(к) = 2^ (к , I ) ,

(12)

quantities are the particular form of the 
coefficients in (10)

if ^r— / i + / 2> / 1 +  / 2“—1, . . .  _  
brackets in (10) denote the coefficients which 
can be found in the books on the group 
theory (3).

It must be noted that /-vectors can differ 
(for the same value of I ) by the character 
of h ansiormation under reflection. Similarly 
to p se usual vector terminology we call 4'the 
p o b r  /-vector”  /-vector which gets by re­
flection a factor ( — I )1 and “ the axia l”  or 
‘ ЧЬг' pseudo-/-vector”  one which gets the 

( — 1) г+1. The spherical harmonic and 
i rx > ! atial ere polar /-vectors, /-vectors of 
ms -p fles can be of both types; polar multi- 

v ectors are usually named electric and 
\ ones — magnetic.

I I
— m m -f- p. )

determined with an accuracy up to a factor 
depending upon L

W ith  certain normalization

V m  +  i) ’

(I ::h m 2) (I m -f 1)
( 13)

‘ Ini± Г — \ 2

If we nut similarly to (4)

# ( г ) ^ № 2 / ( г Д ,  I), (14)
1

we get from (12) and (8) using expression (6)

Л11 (r, k, l) =  j / | -  il ^ { - i ) m h r  (ft) yU  Y ? + »  (0, Ф) h (kr) +  c. c. f 15)

E) no  field of the magnetic multipole is given by

E (k) =  i k  A (k).

Hence, according to (1 2 )

E*(k. I) =  ik 2  ( - : 1Г him{k) yW У Г+“ (0, ? )
m

(16)
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and

E*(r. ft, l)= y f 2  ( - * № ”(&) Ф) fi (ftr)-fc. c. (17)
m

For the determination of the magnetic field we shall use the expression:

H (k) =  i [kA (k)]
or

я »  (к )= -  ) / 2  к 2  y;0 ( - 1 ) « n -  (k),
о

■where к is represented in the form of an /-vector

№ = кпР; « ' =  cos&; 1 =  ±  — sin &e± ^g)
V ^

and the vector product is also written in /-vector form. Using the known relations;

n»YT =  y T+T +  ( - уГ-+Л  (19)
where

„ l ____ .  / ( l + l  — m ) ( l + l + m ) _  j  % f  (I -j- m+  1) (I ±  m +  2) ,
'm0 V  (2J +  l ) (2 2  +  3) ’ а «>.±1 —  V 2 ( 2 Z + l ) ( ‘2J +  4) ’

, _______________  ______= _______  (2 0 )
rd _ /  (l — m)(l +  m) t „I _  Г  (I +m)( l  +  m — 1)
Pm0 V  (21 + 1) (21— 1) * Rm .il у  2 (2i +  1) (21 — 1) ‘

Hence we obtain for H

Я* (k, I) =  ft 2  ( -  W  W  [  / L [ J r r + f  (0, ?) -  ( -  l r  3 U  r W 1 (&, ? ) J ; (21)
m

j ^ ( r ,  ft, /) =  |// 4  ?;blf t V ( _ i ) ™ / 2r« (ft)[ j / ^  « ^ 7 ^ ( 9 ,  ф) / , „ ( И  +
m

+  \ /Г~ 1 ^тЛ -  I )*?  №  (0. Ф) (kr) ]  +  c. c. (22)

4. For the vector potential of an electric multipole formula (10) permits us to construct 
the following general expression

#  (k, 0  =  2 < ~  «*” (A) 4  (» .? )  +  2  ( -  1)m (*) ( - 1)» f*u Y f+ t  (*. 9), (23)
m ш

Here a” and bf are two arbitrary inde- ^  ' ...
pendent /-vectors; coefficients a,'ni =  ( — l)m x  ф ^ ^  f (д. ^

x  ̂ 1>s\ and (__1 )m f   ̂ 1 1 ^  ^
V— /л m-гц |iy 11 V—'» w+i1 !*■/ leads [with the help of (19)] to the follow-

can be made by a certain normalization iden- reJa^ on between at , 6( and c\ .
tical with the coefficients in (19) {2l + 1 }  cf =  (Z + 1 }  a? +  lbf_ (24)

rov scalar potential we nave the expres- v 4 1 ' ‘ v 9
gion f3) in which the Lorentz condition: Xhe electric field is

Ф (k) =  nA (к) E (k) =  ik [А (к) — и Ф (k)],
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E * ( к, =  ? )'] .  (25)
m

where _______

dT =  J L W ± i l . ( a T - b T ) .  (26)

The magnetic field is readily determined by means of the relation

H (к) =  [nE (к)]. E (k) =  -  [n il  (k)].

Noting that (25) has the form of (21), we conclude that (к, I) must have the form 
of (16). The comparison gives

H 11 (k - l) = k Ъ  ( ” 1)т^ т {k) ?)• <27>
m

A gain , b y  the transformation of the type (3) — (7) we find

A* (r, ft, Z) =  il+l 2  ( -  l)m W n (A) (9. Ф) /u i (Ar) -
m

—  blm (ft) ( -  (0, ф) Л-l (ft/1)] +  0 . c; (28)

£> (r, k, I) = - / А  ^  ( _  l)m #** (ft) [  f / r : - : ( 6> &) /г,. (*r) +
m

+  + c -  c.; (29)

# 11 (r, ft, / ) =  y r ~  i l k  2  ( —  1Г ^ - ,ПГ *)Т^ 1' Г ^ ( 0. &)/z(ftr) +  c. C. (30)
m

The expressions for the field vectors E ... " "........."............ '... ................... .. ..
and Ж involve one /-vector d f  determined 5. Th^ quantized field amplitudes one can
according to (26). /-vectors a f  and h f f obtain from the energy expression 
entering the expression for the potenti-I

irately are arbitrary. This is ‘ in au\»r- W==.„A. С | E (k) |i (dk) .-=-■■■ С ! II (к) j* (rfk). (33)
ianee with the gauge invariance of the f r Tl  ^  J J *
vo 'tors. W e may put in particular c f  — Ь ^
'П* f tler,s potential). Then from (24) Expanding  ̂ Ь (к) and II (a) into series of

multipole fields we get

-  ( / -  w - 2 2 2(I I

1  ̂ лиг / .jn
I m к

bT =  _  j /  l ± ±  df  (cf =  0). (31) +  W magn (ft, I, m)}, (34)
where

If we put a f  == 0 , then
W e l  (ft, /, m)  =  ~  J ft2 i d f  (ft) I2 ft2 d k

A к

__ = - -~ | r fT ( f t )| 2 Aft,

=  -  V T V \  df  (a? ==0 )- (32) W ^ s n  (ft, I, m) =  ~  | hf  (ft) Is Aft.

П +  1. A*u n i--- ---- -------------- J m .

1 / * < *  + 1) ' 1 ’ =---^I^T(ft)|2 Aft,

~  Jm ,„m Лч /004 rrr , r ,  ̂ к4 , , m „ л , (35)
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On the other hand, putting probability of the emission of a given quan-
turn by any non-relativistic system, i. e. under

W ei (k, m ) — %ck< с, (об) interaction law
magn

where I are the usual oscillator operators, у  ____■— (Ар +  рА) +  еФ (38)
satisfying the commutation rule 2Mc \

SS*—-S*S =  1, (p — operator of the momentum). The dimen-
we find: sions of the system are supposed to be small

/ —  , ______  as compared with the wave length of radia-
у  |~ГД Ы ?(/с) =  2 ]А с /сД & ^  (37) tion

Jcr <£ 1 (39)
and similarly for hf (к). In the left-hand
side of (37) we include the Such a probability gives the estimation of
always enters together with dt (and ht , the  l i f e . t im e  of the excited states of nuclei,
correspondingly) into the expressions for Using; e. g . the potentials (28) and the
potentials and fields (8 ), (lo), etc. condition (31), we get* the following expres-

Let us write also the expression for the ^  f(jp ^  emission probability

Л̂ ) =  1Г  ] * * 2*- 8 ^ _112  *• (4° )y.

Here eQT is the electric 2 '-pole moment of the system, given by

I +  1

The normalization in (41) is such* that
2 |<2 ? | W 21

f in  the brackets in (40) is meant the matrix element of the corresponding operator.]
It can be shown that similarly to the relation

dr __  _p_ 
dt m

it holds ________ _____
=  ickQf  =  V  (p-»Q?+*  +  Q f+ fp -») ,  (42)

V-
which allows bo transform (40) into the form

,y<!> =  _J—  L ± i  Г ~  91 1 2 к*г1 - 1 eQf I2. (43)
el 24 +  1 I L (2  ̂— 1) I j  Й. 1 ^  V

Using the potentials (15) we obtain the expression of the emission probability for the 
magnetic 2 l-pole

* , - ( 0 _________8_______r i ^ r ^ i M r !2 Г44)rtmagn- (2i +  1)(; + 1 ) i  L(2/}! J  ft | M i | ’ ' '

* Owing to (39) it is possible to disregard the first term in (28) and to put

12 Journal cf Physics, Vol. X I, No. 1
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where the magnetic multipole moment of the system is determined as

(* +  1) / ( 2/ + 1) (21- 1)

f -+
'a  is Pauli’s spin operator).

6 . In constructing the expressions for the 
potentials of multipole field it is not necessary 
to start from the solution (1) and (8) , using 
further the expansion in the к -space. It is 
possible to solve the wave equation in sphe­
rical harmonics immediately. In this case the 
transformation properties determine the cha­
racter of the separation of variables and we 
arrive at the expressions (7), (15) and (28), 
where we must consider fi{kr) as a solution 
of the corresponding equation for radial func­
tion. If we choose the radial functions (6 ) 
without singularities in the origin we obtain 
the solution with the energy flux vanishing 
at infinity (standing wave). If it is necessary 
to obtain the solution with a non-vanishing 
energy flux at infinity (radiation of classical 
multipole) we have to choose:

f1 ( k r )  =  с ■
H I+i/ 2 (kr)

Y k r
(46)

where # i+ i ,a (At ) is the Hankel function of the 
first kind. Such solutions have the poles in 
the origin. In particular, the vector-potential 
of the electric field (28) will have the pole 
of (I -j- l)th order [the first term in (28)]. 
However, if we choose the coefficients accord­
ing to (32) only the pole of (I—  l)th order 
remains. These are the only potentials ade­
quate for the calculation of the internal con­
version coefficients.

If we put in (46)[/2 /TC .c=l,the energy flux 
of the multipole corresponds to the emission 
probability

mi) =  !3 _L • mo =el тг2£ ь 1 тягл _  I hT i2
magn ъЧгк (47)

Comparison of (47) with (43) and (44) gives 
the connection between the coefficients df  
and hf  and the electric and magnetic 2 '-pole 
momenta of the radiating system.
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