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ELECTROMAGNETIC FIELD OF MULTIPOLES 
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A simple derivation of the electric and magnetic fields of multipoles is given.

The expressions for the potentials and the 
fields of electric and magnetic multipoles are 
given in a paper b y H e i t l e r  (*). However, 
Heitler’s method is somewhat cumbersome 
and artificial; the gauge of Heitler’s poten
tials is inconvenient in one of the most impor
tant applications of the multipole potentials —  
the calculation of the coefficients of internal 
conversion of y-rays (2). Therefore, it seems 
reasonable to propose a simple derivation 
of the multipole potentials.

1 . Consider firstly the scalar potential Ф(г) 
satisfying the wave equation

The general solution of this equation is

Ф ^  =  ( 2 ^ 7» S  ф (к ) e<kr(c?k) +  c.c. ( ! )

Here in Ф (k) is involved the time factor erlchi, 
(dk) =  k2dhd& is the volume element of the 
wave vector in k-space; c. c, stands for “ comp
lex conjugate expression” . We are interested 
in the angle dependent part of Ф (k). If we 
represent Ф (k) in the form:

oo

®(k) =  2 ® (k, 0 . <2)
1-0

I

ф (k, I) =  2  ( -  1)ic"  ( * ) Y ? ?)*
m= - 1

where $ and 9  are the spherical angles in 
к-space, F f  (ft, 9 ) — spherical harmonics, which 
we consider to be normalized to unity, quan
tities Ф(к, I) and Ф(к) must be scalars and 
the coefficients cf transform under rotation 
of coordinate system as Y f ,  i. e. according 
to the (21 - f  l)-dimensional representation of 
the rotation group. For brevity we shall call 
in the sequel such a set of quantities an 
/-vector. Potential determined by the /-vector 
cf we call “ potential of the 2г~ро1е’ \ Accord
ing to the expansion (2), (3) we write

Ф (г )=  ^ к Ч к ^ Ф ( т ,  к, I). (4)

Using the familiar expansion

ear =  4 * V  ilf l {kr) 2  Y f  (&, 9 ) Y f  (6, Ф), (5)
I m

where 6 and Ф are the spherical angles in 
the space and

/< ( '"• > = / f  №

(J — the Bessel function), we obtain after 
integration with respect to к :

Ф (г, k , l ) = ] / ^ i l ' Z ( - l ) mcim(k )Y?(<} ,$ ) fl{kr) +  *. с. (7)
m
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*-2. For the vector potential we write simi
lar] у to (1)

A (r) =  (2* j ^   ̂ A (k) eikr(^k) +  C- c - (8 )

In the expansion of A (fe) there arises the 
problem of construction of a vector from 
/-vectors of m ultipole coefficients and sphe
rical harmonics. We can consider vector A 
as a I  “Vector:

A* =  Azi A ^  =  ± ^ f (Ax ± i A „ )  (9)

(the lower index of 1 -vector is dropped).
Such a construction can be realized simply 

with the help of the Clebsch-Gordon formula 
for the reduction of the product of two rep re 
sentations of a rotation group into irreducible 
representations. If two /-vectors Uf± and F^ 2 
are given, one can build an /-vector W f :

W f  = (10)

1 , - 1 2 Г The

3. From the form of formula (3), which 
is a particular case of (1 0 ), it is seen that 
it is impossible to construct the scalar poten
tial from pseudo-Z-vector and spherical harmo
nics (since Ф is a scalar but not a pseudo- 
scalar). Hence for a magnetic multipole

Ф =  0. (11)

For the vector potential of a magnetic mul
tipole we obtain using (1 0 ), the following 
expression in which hf  stands for the multi
pole coefficients

#(к) = 2^ (к , I ) ,

(12)

quantities are the particular form of the 
coefficients in (10)

if ^r— / i + / 2> / 1 +  / 2“—1, . . .  _  
brackets in (10) denote the coefficients which 
can be found in the books on the group 
theory (3).

It must be noted that /-vectors can differ 
(for the same value of I ) by the character 
of h ansiormation under reflection. Similarly 
to p se usual vector terminology we call 4'the 
p o b r  /-vector”  /-vector which gets by re
flection a factor ( — I )1 and “ the axia l”  or 
‘ ЧЬг' pseudo-/-vector”  one which gets the 

( — 1) г+1. The spherical harmonic and 
i rx > ! atial ere polar /-vectors, /-vectors of 
ms -p fles can be of both types; polar multi- 

v ectors are usually named electric and 
\ ones — magnetic.

I I
— m m -f- p. )

determined with an accuracy up to a factor 
depending upon L

W ith  certain normalization

V m  +  i) ’

(I ::h m 2) (I m -f 1)
( 13)

‘ Ini± Г — \ 2

If we nut similarly to (4)

# ( г ) ^ № 2 / ( г Д ,  I), (14)
1

we get from (12) and (8) using expression (6)

Л11 (r, k, l) =  j / | -  il ^ { - i ) m h r  (ft) yU  Y ? + »  (0, Ф) h (kr) +  c. c. f 15)

E) no  field of the magnetic multipole is given by

E (k) =  i k  A (k).

Hence, according to (1 2 )

E*(k. I) =  ik 2  ( - : 1Г him{k) yW У Г+“ (0, ? )
m

(16)
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and

E*(r. ft, l)= y f 2  ( - * № ”(&) Ф) fi (ftr)-fc. c. (17)
m

For the determination of the magnetic field we shall use the expression:

H (k) =  i [kA (k)]
or

я »  (к )= -  ) / 2  к 2  y;0 ( - 1 ) « n -  (k),
о

■where к is represented in the form of an /-vector

№ = кпР; « ' =  cos&; 1 =  ±  — sin &e± ^g)
V ^

and the vector product is also written in /-vector form. Using the known relations;

n»YT =  y T+T +  ( - уГ-+Л  (19)
where

„ l ____ .  / ( l + l  — m ) ( l + l + m ) _  j  % f  (I -j- m+  1) (I ±  m +  2) ,
'm0 V  (2J +  l ) (2 2  +  3) ’ а «>.±1 —  V 2 ( 2 Z + l ) ( ‘2J +  4) ’

, _______________  ______= _______  (2 0 )
rd _ /  (l — m)(l +  m) t „I _  Г  (I +m)( l  +  m — 1)
Pm0 V  (21 + 1) (21— 1) * Rm .il у  2 (2i +  1) (21 — 1) ‘

Hence we obtain for H

Я* (k, I) =  ft 2  ( -  W  W  [  / L [ J r r + f  (0, ?) -  ( -  l r  3 U  r W 1 (&, ? ) J ; (21)
m

j ^ ( r ,  ft, /) =  |// 4  ?;blf t V ( _ i ) ™ / 2r« (ft)[ j / ^  « ^ 7 ^ ( 9 ,  ф) / , „ ( И  +
m

+  \ /Г~ 1 ^тЛ -  I )*?  №  (0. Ф) (kr) ]  +  c. c. (22)

4. For the vector potential of an electric multipole formula (10) permits us to construct 
the following general expression

#  (k, 0  =  2 < ~  «*” (A) 4  (» .? )  +  2  ( -  1)m (*) ( - 1)» f*u Y f+ t  (*. 9), (23)
m ш

Here a” and bf are two arbitrary inde- ^  ' ...
pendent /-vectors; coefficients a,'ni =  ( — l)m x  ф ^ ^  f (д. ^

x  ̂ 1>s\ and (__1 )m f   ̂ 1 1 ^  ^
V— /л m-гц |iy 11 V—'» w+i1 !*■/ leads [with the help of (19)] to the follow-

can be made by a certain normalization iden- reJa^ on between at , 6( and c\ .
tical with the coefficients in (19) {2l + 1 }  cf =  (Z + 1 }  a? +  lbf_ (24)

rov scalar potential we nave the expres- v 4 1 ' ‘ v 9
gion f3) in which the Lorentz condition: Xhe electric field is

Ф (k) =  nA (к) E (k) =  ik [А (к) — и Ф (k)],
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E * ( к, =  ? )'] .  (25)
m

where _______

dT =  J L W ± i l . ( a T - b T ) .  (26)

The magnetic field is readily determined by means of the relation

H (к) =  [nE (к)]. E (k) =  -  [n il  (k)].

Noting that (25) has the form of (21), we conclude that (к, I) must have the form 
of (16). The comparison gives

H 11 (k - l) = k Ъ  ( ” 1)т^ т {k) ?)• <27>
m

A gain , b y  the transformation of the type (3) — (7) we find

A* (r, ft, Z) =  il+l 2  ( -  l)m W n (A) (9. Ф) /u i (Ar) -
m

—  blm (ft) ( -  (0, ф) Л-l (ft/1)] +  0 . c; (28)

£> (r, k, I) = - / А  ^  ( _  l)m #** (ft) [  f / r : - : ( 6> &) /г,. (*r) +
m

+  + c -  c.; (29)

# 11 (r, ft, / ) =  y r ~  i l k  2  ( —  1Г ^ - ,ПГ *)Т^ 1' Г ^ ( 0. &)/z(ftr) +  c. C. (30)
m

The expressions for the field vectors E ... " "........."............ '... ................... .. ..
and Ж involve one /-vector d f  determined 5. Th^ quantized field amplitudes one can
according to (26). /-vectors a f  and h f f obtain from the energy expression 
entering the expression for the potenti-I

irately are arbitrary. This is ‘ in au\»r- W==.„A. С | E (k) |i (dk) .-=-■■■ С ! II (к) j* (rfk). (33)
ianee with the gauge invariance of the f r Tl  ^  J J *
vo 'tors. W e may put in particular c f  — Ь ^
'П* f tler,s potential). Then from (24) Expanding  ̂ Ь (к) and II (a) into series of

multipole fields we get

-  ( / -  w - 2 2 2(I I

1  ̂ лиг / .jn
I m к

bT =  _  j /  l ± ±  df  (cf =  0). (31) +  W magn (ft, I, m)}, (34)
where

If we put a f  == 0 , then
W e l  (ft, /, m)  =  ~  J ft2 i d f  (ft) I2 ft2 d k

A к

__ = - -~ | r fT ( f t )| 2 Aft,

=  -  V T V \  df  (a? ==0 )- (32) W ^ s n  (ft, I, m) =  ~  | hf  (ft) Is Aft.

П +  1. A*u n i--- ---- -------------- J m .

1 / * < *  + 1) ' 1 ’ =---^I^T(ft)|2 Aft,

~  Jm ,„m Лч /004 rrr , r ,  ̂ к4 , , m „ л , (35)
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On the other hand, putting probability of the emission of a given quan-
turn by any non-relativistic system, i. e. under

W ei (k, m ) — %ck< с, (об) interaction law
magn

where I are the usual oscillator operators, у  ____■— (Ар +  рА) +  еФ (38)
satisfying the commutation rule 2Mc \

SS*—-S*S =  1, (p — operator of the momentum). The dimen-
we find: sions of the system are supposed to be small

/ —  , ______  as compared with the wave length of radia-
у  |~ГД Ы ?(/с) =  2 ]А с /сД & ^  (37) tion

Jcr <£ 1 (39)
and similarly for hf (к). In the left-hand
side of (37) we include the Such a probability gives the estimation of
always enters together with dt (and ht , the  l i f e . t im e  of the excited states of nuclei,
correspondingly) into the expressions for Using; e. g . the potentials (28) and the
potentials and fields (8 ), (lo), etc. condition (31), we get* the following expres-

Let us write also the expression for the ^  f(jp ^  emission probability

Л̂ ) =  1Г  ] * * 2*- 8 ^ _112  *• (4° )y.

Here eQT is the electric 2 '-pole moment of the system, given by

I +  1

The normalization in (41) is such* that
2 |<2 ? | W 21

f in  the brackets in (40) is meant the matrix element of the corresponding operator.]
It can be shown that similarly to the relation

dr __  _p_ 
dt m

it holds ________ _____
=  ickQf  =  V  (p-»Q?+*  +  Q f+ fp -») ,  (42)

V-
which allows bo transform (40) into the form

,y<!> =  _J—  L ± i  Г ~  91 1 2 к*г1 - 1 eQf I2. (43)
el 24 +  1 I L (2  ̂— 1) I j  Й. 1 ^  V

Using the potentials (15) we obtain the expression of the emission probability for the 
magnetic 2 l-pole

* , - ( 0 _________8_______r i ^ r ^ i M r !2 Г44)rtmagn- (2i +  1)(; + 1 ) i  L(2/}! J  ft | M i | ’ ' '

* Owing to (39) it is possible to disregard the first term in (28) and to put

12 Journal cf Physics, Vol. X I, No. 1
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where the magnetic multipole moment of the system is determined as

(* +  1) / ( 2/ + 1) (21- 1)

f -+
'a  is Pauli’s spin operator).

6 . In constructing the expressions for the 
potentials of multipole field it is not necessary 
to start from the solution (1) and (8) , using 
further the expansion in the к -space. It is 
possible to solve the wave equation in sphe
rical harmonics immediately. In this case the 
transformation properties determine the cha
racter of the separation of variables and we 
arrive at the expressions (7), (15) and (28), 
where we must consider fi{kr) as a solution 
of the corresponding equation for radial func
tion. If we choose the radial functions (6 ) 
without singularities in the origin we obtain 
the solution with the energy flux vanishing 
at infinity (standing wave). If it is necessary 
to obtain the solution with a non-vanishing 
energy flux at infinity (radiation of classical 
multipole) we have to choose:

f1 ( k r )  =  с ■
H I+i/ 2 (kr)

Y k r
(46)

where # i+ i ,a (At ) is the Hankel function of the 
first kind. Such solutions have the poles in 
the origin. In particular, the vector-potential 
of the electric field (28) will have the pole 
of (I -j- l)th order [the first term in (28)]. 
However, if we choose the coefficients accord
ing to (32) only the pole of (I—  l)th order 
remains. These are the only potentials ade
quate for the calculation of the internal con
version coefficients.

If we put in (46)[/2 /TC .c=l,the energy flux 
of the multipole corresponds to the emission 
probability

mi) =  !3 _L • mo =el тг2£ ь 1 тягл _  I hT i2
magn ъЧгк (47)

Comparison of (47) with (43) and (44) gives 
the connection between the coefficients df  
and hf  and the electric and magnetic 2 '-pole 
momenta of the radiating system.
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